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The Problem of Consistency

Given a system of polynomial PDE, e.g.:











ux + vy = 0

uy − vx = 0

(uxx + uyy)
2 + (vxx + vyy)

2 = 0

Question: Is it consistent, i.e., does it have solutions?

(We look for solutions in differential extensions of the coefficient field . . .)
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Corresponding algebraic system















ux + vy = 0

uy − vx = 0

(uxx + uyy)2 + (vxx + vyy)2 = 0

←→















z1 + z2 = 0

z3 − z4 = 0

(z5 + z6)
2 + (z7 + z8)

2 = 0

PDE system is consistent =⇒ Algebraic system is consistent
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Corresponding algebraic system















ux + vy = 0

uy − vx = 0

(uxx + uyy)2 + (vxx + vyy)2 = 1

←→















z1 + z2 = 0

z3 − z4 = 0

(z5 + z6)
2 + (z7 + z8)

2 = 1

PDE system is inconsistent Algebraic system is consistent

The converse is not always true.
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Differential Nullstellensatz

Notation F (≤k)

set of all partial derivatives of elements of F of order ≤ k

Theorem Polynomial PDE system F = 0 has no solutions

m

∃ k ≥ 0 such that 1 ∈ 〈F (≤k)〉.

Example














ux + vy = 0

uy − vx = 0

(uxx + uyy)2 + (vxx + vyy)2 = 1

k = 1
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The Problem

Given non-negative integers m,n, h, d.

Find k(m,n, h, d) such that:

Polynomial PDE system F = 0

in m independent variables,

n dependent variables

of order h

and degree d

has no solutions

m

1 ∈ 〈F (≤k(m,n,h,d))〉
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Main Result

[Seidenberg, 1956] Proposed to analyse the differential
elimination algorithm to obtain the bound.

Theorem [GKOS ’08]

k(m,n, h, d) = A(2m + 2n + 4,max(3, h, d) + 1).

Here A(m,n) is the Ackermann function.
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Ackermann Function
Definition

A(0, n) = n + 1

A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m,A(m + 1, n)).

First few values [Wikipedia]:
0 1 2 3 4 n

0 1 2 3 4 5 n + 1

1 2 3 4 5 6 n + 2

2 3 5 7 9 11 2n + 3

3 5 13 29 61 125 2n+3
− 3

4 13 65533 265536
− 3 2265536

− 3 A(3, A(4, 3)) 2
2
. .

.2

| {z }

n+3 twos

5 65533 22
. .

.2

| {z }

65535 twos

A(4, A(5, 1)) A(4, A(5, 2)) A(4, A(5, 3)) A(4, A(5, n − 1))

m
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Why Ackermann Function?

Definition. A sequence of non-negative integer n-tuples
τ1, τ2, . . . is called dicksonian, if for all i < j, τj − τi has at
least one negative coordinate.

Alternative definition: a sequence of monomials u1, u2, . . .

such that ui 6 | uj for i < j.

Lemma [Dickson] Every dicksonian sequence terminates.

Lemma [G. Socias, 1991] Every dicksonian sequence of
n-tuples, in which the maximal coordinate at each step
increases by 1, has length at most

A(n,m− 1)− 1,

where m is the maximal coordinate of the first tuple.
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Why Dicksonian Sequences?

Polynomial completion algorithms such as

Algorithm Buchberger (F , ≤)
repeat

R := NormalForm(SPoly(F ), F,≤) \ {0}
F := F ∪ R

until R = ∅

return F

end

produce dicksonian sequences of leading monomials.
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Why Dicksonian Sequences?

Differential-algebraic completion algorithms, when applied to
polynomial PDE systems, produce sequences of powers of
leading partial derivatives of the form

(

∂huj

∂xi1
1 . . . ∂xim

m

)d

such that the corresponding (m + n)-tuples

(i1, . . . , im, 0, . . . , d, . . . , 0)

form dicksonian sequences.
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How Fast Do Tuples Grow?

Polynomial case: at each iteration, degree doubles (at
most).

Differential case: at each iteration,

• order h doubles

• degree d becomes (4d)(
2h+m

m
)+1 [GKOS ’08].

We have a dicksonian sequence of (m + n)-tuples, in which
the coordinates of the i-th tuple are bounded by a certain
function f(i).
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How Long Are these Sequences?

Function f(i) is not growing too fast: ∃ δ such that ∀ i

f(i + 1)− f(i) ≤ A(δ, f(i)− 1).

Lemma [GKOS’08] Length of such sequence does not exceed

⌈

f−1(A[m + n + δ, f(1)− 1])
⌉

and the coordinates of the last tuple do not exceed

A(m + n + δ, f(1)− 1).
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Complexity of Differential Completion

The number of iterations is bounded by:

A(m + n + 3,max(9, 2h, d)− 1)

and the orders and degrees of the output, as well as the
number of differentiations required to produce it, by:

kcompletion = A(m + n + 4,max(3, h, d) − 1).
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End of story?

What is the output of differential completion?
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Inequations

Differential completion uses pseudo-reduction. Therefore, its
output is equivalent to the input only subject to inequations.

Formally:

F = 0
completion
−→ F̄ = 0, s 6= 0

such that

• F (u) = 0 ⇒ F̄ (u) = 0

• F̄ (u) = 0 and s(u) 6= 0 ⇒ F (u) = 0

• There may be solutions of F = 0 on which s vanishes.
These solutions cannot be obtained from F̄ = 0, s 6= 0.
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Completion of Inconsistent Systems

If F = 0 is inconsistent, it is not guaranteed that

F̄ = {1},

or even that
1 ∈ 〈F̄ 〉,

but only that system

F̄ = 0, s 6= 0

is inconsistent, i.e.,

s ∈
√

〈F̄ 〉,

where s is the product of initials and separants of F̄ .
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Splitting

F = 0

F̄ = 0, s 6= 0 F1 = F ∪ {s} = 0

F̄1 = 0, s1 6= 0 F2 = F1 ∪ {s1} = 0

. . . . . .
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Height of Splitting Tree
F = 0

F̄ = 0, s 6= 0 F1 = F ∪ {s} = 0

F̄1 = 0, s1 6= 0 F2 = F1 ∪ {s1} = 0

. . . . . .

• Walking down the tree produces a dicksonian sequence

• At each step orders and degrees grow no faster than

A(m + n + 4,max(3, h, d) − 1).

• Therefore, the height of the tree is bounded by

log4(log4(log4(A(2m + 2n + 4,max(3, h, d)− 1)))).
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Obtaining Expression for 1
Let F = 0 be an inconsistent system.

F = 0

F̄ = 0, s 6= 0

F̄ ⊂ 〈F (≤kcompletion)〉

s ∈
√

〈F̄ 〉

F1 = F ∪ {s} = 0

Suppose that we“recursively”

obtained bound k1 for F1.

Then 1 ∈ 〈F (≤k1)〉+ 〈s(≤k1)〉.

And sufficiently large

powers of derivatives of s

can be expressed

in terms of derivatives of F̄ .
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Expressing Powers of Derivatives
• s ∈

√

〈F̄ 〉

• [Kollar, 1988] A bound for q such that

sq ∈ 〈F̄ 〉

in terms of number of variables and degrees of F̄ .

• [Ritt] If sq ∈ 〈G〉, then

(

∂s

∂xi

)2q−1

∈ 〈G(≤q)〉.

Proof for q = 2:

s2 ∈ 〈G〉 ⇒ ss′ ∈ 〈G,G′〉 ⇒

(s′)2 + ss′′ ∈ 〈G,G′, G′′〉 ⇒ (s′)3 ∈ 〈G,G′, G′′〉.
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