A Bound that Reduces Differential Nullstellensatz to the Algebraic One

Oleg Golubitsky
Postdoctoral Fellow
Ontario Research Centre for Computer Algebra University of Western Ontario

Joint work with:
Marina Kondratieva (Moscow State University)
Alexey Ovchinnikov (University of Illinois at Chicago)
Agnes Szanto (North Carolina State University)

The Problem of Consistency

Given a system of polynomial PDE, e.g.:

$$
\left\{\begin{array}{l}
u_{x}+v_{y}=0 \\
u_{y}-v_{x}=0 \\
\left(u_{x x}+u_{y y}\right)^{2}+\left(v_{x x}+v_{y y}\right)^{2}=0
\end{array}\right.
$$

Question: Is it consistent, i.e., does it have solutions?
(We look for solutions in differential extensions of the coefficient field ...)

The Problem of Consistency

Given a system of polynomial PDE, e.g.:

$$
\left\{\begin{array}{l}
u_{x}+v_{y}=0 \\
u_{y}-v_{x}=0 \\
\left(u_{x x}+u_{y y}\right)^{2}+\left(v_{x x}+v_{y y}\right)^{2}=0
\end{array}\right.
$$

Question: Is it consistent, i.e., does it have solutions?
(We look for solutions in differential extensions of the coefficient field ...)

Answer: YES

The Problem of Consistency

Given a system of polynomial PDE, e.g.:

$$
\left\{\begin{array}{l}
u_{x}+v_{y}=0 \\
u_{y}-v_{x}=0 \\
\left(u_{x x}+u_{y y}\right)^{2}+\left(v_{x x}+v_{y y}\right)^{2}=1
\end{array}\right.
$$

Question: Is it consistent, i.e., does it have solutions?
(We look for solutions in differential extensions of the coefficient field ...)

Answer: NO

Corresponding algebraic system

$$
\left\{\begin{array}{l}
u_{x}+v_{y}=0 \\
u_{y}-v_{x}=0 \\
\left(u_{x x}+u_{y y}\right)^{2}+\left(v_{x x}+v_{y y}\right)^{2}=0
\end{array}\right.
$$

PDE system is consistent

Corresponding algebraic system

$$
\left\{\begin{array} { l }
{ u _ { x } + v _ { y } = 0 } \\
{ u _ { y } - v _ { x } = 0 } \\
{ (u _ { x x } + u _ { y y }) ^ { 2 } + (v _ { x x } + v _ { y y }) ^ { 2 } = 1 }
\end{array} \longleftrightarrow \left\{\begin{array}{l}
z_{1}+z_{2}=0 \\
z_{3}-z_{4}=0 \\
\left(z_{5}+z_{6}\right)^{2}+\left(z_{7}+z_{8}\right)^{2}=1
\end{array}\right.\right.
$$

PDE system is inconsistent
Algebraic system is consistent

The converse is not always true.

Differential Nullstellensatz

Notation $F^{(\leq k)}$
set of all partial derivatives of elements of F of order $\leq k$

Theorem Polynomial PDE system $F=0$ has no solutions
§

$$
\exists k \geq 0 \quad \text { such that } \quad 1 \in\left\langle F^{(\leq k)}\right\rangle .
$$

Example

$$
\left\{\begin{array}{l}
u_{x}+v_{y}=0 \\
u_{y}-v_{x}=0 \\
\left(u_{x x}+u_{y y}\right)^{2}+\left(v_{x x}+v_{y y}\right)^{2}=1
\end{array} \quad k=1\right.
$$

The Problem

Given non-negative integers m, n, h, d.
Find $k(m, n, h, d)$ such that:
Polynomial PDE system $F=0$
in m independent variables,
n dependent variables
of order h
and degree d
has no solutions

$$
\begin{gathered}
\Uparrow \\
1 \in\langle F(\leq k(m, n, h, d))\rangle
\end{gathered}
$$

Main Result

[Seidenberg, 1956] Proposed to analyse the differential elimination algorithm to obtain the bound.

Theorem [GKOS '08]

$$
k(m, n, h, d)=A(2 m+2 n+4, \max (3, h, d)+1) .
$$

Here $A(m, n)$ is the Ackermann function.

Ackermann Function

Definition

$$
\begin{aligned}
A(0, n) & =n+1 \\
A(m+1,0) & =A(m, 1) \\
A(m+1, n+1) & =A(m, A(m+1, n)) .
\end{aligned}
$$

First few values [Wikipedia]:

	0	1	2	3	4	n
0	1	2	3	4	5	$n+1$
1	2	3	4	5	6	$n+2$
2	3	5	7	9	11	$2 n+3$
3	5	13	29	61	125	$2^{n+3}-3$
4	13	65533 .2	$2^{65536}-3$	$2^{2^{65536}}-3$	$A(3, A(4,3))$	$\underbrace{2^{2^{\cdot}}}_{n+3 \text { twos }}$
5	65533	$\underbrace{2^{2}}_{65535 \text { twos }}$	$A(4, A(5,1))$	$A(4, A(5,2))$	$A(4, A(5,3))$	$A(4, A(5, n-1))$
m						

Why Ackermann Function?

Definition. A sequence of non-negative integer n-tuples $\tau_{1}, \tau_{2}, \ldots$ is called dicksonian, if for all $i<j, \tau_{j}-\tau_{i}$ has at least one negative coordinate.
Alternative definition: a sequence of monomials u_{1}, u_{2}, \ldots such that $u_{i} \nmid u_{j}$ for $i<j$.

Lemma [Dickson] Every dicksonian sequence terminates.
Lemma [G. Socias, 1991] Every dicksonian sequence of n-tuples, in which the maximal coordinate at each step increases by 1 , has length at most

$$
A(n, m-1)-1,
$$

where m is the maximal coordinate of the first tuple.

Why Dicksonian Sequences?

Polynomial completion algorithms such as

Algorithm Buchberger (F, \leq)

repeat

$$
\begin{aligned}
& R:=\operatorname{NormalForm}(\operatorname{SPoly}(F), F, \leq) \backslash\{0\} \\
& F:=F \cup R
\end{aligned}
$$

until $R=\varnothing$
return F
end
produce dicksonian sequences of leading monomials.

Why Dicksonian Sequences?

Differential-algebraic completion algorithms, when applied to polynomial PDE systems, produce sequences of powers of leading partial derivatives of the form

$$
\left(\frac{\partial^{h} u_{j}}{\partial x_{1}^{i_{1}} \ldots \partial x_{m}^{i_{m}}}\right)^{d}
$$

such that the corresponding $(m+n)$-tuples

$$
\left(i_{1}, \ldots, i_{m}, 0, \ldots, d, \ldots, 0\right)
$$

form dicksonian sequences.

How Fast Do Tuples Grow?

Polynomial case: at each iteration, degree doubles (at most).

Differential case: at each iteration,

- order h doubles
- degree d becomes ($4 d$) $)_{\binom{2 h+m}{m}+1}$ [GKOS '08].

We have a dicksonian sequence of $(m+n)$-tuples, in which the coordinates of the i-th tuple are bounded by a certain function $f(i)$.

How Long Are these Sequences?

Function $f(i)$ is not growing too fast: $\exists \delta$ such that $\forall i$

$$
f(i+1)-f(i) \leq A(\delta, f(i)-1)
$$

Lemma [GKOS'08] Length of such sequence does not exceed

$$
\left\lceil f^{-1}(A[m+n+\delta, f(1)-1])\right\rceil
$$

and the coordinates of the last tuple do not exceed

$$
A(m+n+\delta, f(1)-1)
$$

Complexity of Differential Completion

The number of iterations is bounded by:

$$
A\left(m+n+3, \max \left(9,2^{h}, d\right)-1\right)
$$

and the orders and degrees of the output, as well as the number of differentiations required to produce it, by:

$$
k_{\text {completion }}=A(m+n+4, \max (3, h, d)-1) .
$$

End of story?

What is the output of differential completion?

Inequations

Differential completion uses pseudo-reduction. Therefore, its output is equivalent to the input only subject to inequations.

Formally:

$$
F=0 \xrightarrow{\text { completion }} \bar{F}=0, s \neq 0
$$

such that

- $F(u)=0 \Rightarrow \bar{F}(u)=0$
- $\bar{F}(u)=0$ and $s(u) \neq 0 \Rightarrow F(u)=0$
- There may be solutions of $F=0$ on which s vanishes. These solutions cannot be obtained from $\bar{F}=0, s \neq 0$.

Completion of Inconsistent Systems

If $F=0$ is inconsistent, it is not guaranteed that

$$
\bar{F}=\{1\},
$$

or even that

$$
1 \in\langle\bar{F}\rangle
$$

but only that system

$$
\bar{F}=0, s \neq 0
$$

is inconsistent, i.e.,

$$
s \in \sqrt{\langle\bar{F}\rangle}
$$

where s is the product of initials and separants of \bar{F}.

Splitting

Height of Splitting Tree

- Walking down the tree produces a dicksonian sequence
- At each step orders and degrees grow no faster than

$$
A(m+n+4, \max (3, h, d)-1) .
$$

- Therefore, the height of the tree is bounded by

$$
\log _{4}\left(\log _{4}\left(\log _{4}(A(2 m+2 n+4, \max (3, h, d)-1))\right)\right) .
$$

Obtaining Expression for 1

Let $F=0$ be an inconsistent system.

$\bar{F} \subset\left\langle F^{\left(\leq k_{\text {completion }}\right)}\right\rangle$ $s \in \sqrt{\langle\bar{F}\rangle}$

Suppose that we "recursively" obtained bound k_{1} for F_{1}.
Then $1 \in\left\langle F^{\left(\leq k_{1}\right)}\right\rangle+\left\langle s^{\left(\leq k_{1}\right)}\right\rangle$.
And sufficiently large powers of derivatives of s
can be expressed
in terms of derivatives of \bar{F}.

Expressing Powers of Derivatives

- $s \in \sqrt{\langle\bar{F}\rangle}$
- [Kollar, 1988] A bound for q such that

$$
s^{q} \in\langle\bar{F}\rangle
$$

in terms of number of variables and degrees of \bar{F}.

- [Ritt] If $s^{q} \in\langle G\rangle$, then

$$
\left(\frac{\partial s}{\partial x_{i}}\right)^{2 q-1} \in\left\langle G^{(\leq q)}\right\rangle
$$

Proof for $q=2$:

$$
\begin{aligned}
s^{2} \in\langle G\rangle \Rightarrow s s^{\prime} \in\left\langle G, G^{\prime}\right\rangle & \Rightarrow \\
\left(s^{\prime}\right)^{2}+s s^{\prime \prime} \in\left\langle G, G^{\prime}, G^{\prime \prime}\right\rangle & \Rightarrow\left(s^{\prime}\right)^{3} \in\left\langle G, G^{\prime}, G^{\prime \prime}\right\rangle
\end{aligned}
$$

