
A New Black Box GCD Algorithm Using Hensel Lifting

Michael Monagan1[0000−0002−4652−2889] and Garrett Paluck1[0000−0001−9498−1011]

Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Abstract. We present a new black box GCD algorithm for two multivariate polynomials a
and b in Z[x1, x2, . . . , xn] where a and b are input as black boxes for their evaluation. Our
algorithm computes g = gcd(a, b) in the sparse representation using sparse Hensel lifting from
bivariate images of g. More precisely, our algorithm first computes the square-free factorization
of the primitive part of g in x1 and then, optionally, computes the content of g in x1 recursively.
We have implemented our new algorithm in Maple with parts of it coded in C for increased
efficiency. For comparison, we have implemented the Kaltofen–Diaz black box GCD algorithm
and also a black box GCD algorithm constructed from the Kaltofen–Yang sparse rational
function interpolation algorithm. Our experimental results show that our new algorithm is
always competitive with the Kaltofen–Yang and Kaltofen–Diaz algorithms and faster when
the square-free factors of g are smaller than g or we do not need the content of g in x1.

Keywords: black box representation · multivariate polynomial GCD · sparse Hensel lifting

1 Introduction

Let a and b be polynomials in Z[x1, ..., xn]. Computing g = gcd(a, b), the greatest common divisor
(GCD) of a and b, is a key operation in a Computer Algebra system. It is used to simplify the
rational function a/b. The first main step to factor a is to compute gcd(a, ∂a/∂x1) to identify
repeated factors of a.

Computing GCDs in Z[x1, . . . , xn] is more difficult than multiplying and dividing polynomials.
All variations of the Euclidean algorithm, including the Subresultant algorithm (see Brown and
Traub [2]), encounter an n dimensional expression swell where the intermediate remainders grow
in size. This renders those algorithms useless when n is not small. The first algorithm to avoid the
expression swell was Brown’s dense modular GCD algorithm from [3]. Two early sparse GCD algo-
rithms for sparse polynomials include Zippel’s sparse GCD algorithm from [23] which is currently
used in Fermat, Magma, Maple and Mathematica, and Wang’s EEZ-GCD algorithm from [21]. Two
recent sparse GCD algorithms include Hu and Monagan [11] which does a Kronecker substitution
on (x2, ..., xn) and Huang and Monagan [12] which uses a randomized Kronecker substitution.

In this work, we present a new GCD algorithm for Z[x1, . . . , xn] where the polynomials a and
b are input by black boxes for their evaluation. The black box representation was first introduced
into Computer Algebra by Kaltofen and Trager in 1990 [13]. The sparse representation of a ∈
Z[x1, ..., xn] consists of a list of non-zero integer coefficients ck and monomials Mk in x1, ..., xn

such that a =
∑t

k=1 ckMk where t is the number of terms of a. The black box representation of
a ∈ Z[x1, ..., xn] is a computer program Ba that takes a point α ∈ Zn and outputs a(α). Computing
Ba(α) is called probing the black box. For efficiency, we will assume we can construct a modular
black box, that is, a black box that can compute a(α) mod p for a prime p. Thus we view the black
box as mapping Ba : (Zn, p)→ Zp. Figure 1 depicts a modular black box.

2 Michael Monagan and Garrett Paluck

a(x1, ..., xn) ∈ Z[x1, ..., xn]
a(α1, ..., αn) mod p

Ba

p

x1 = α1

x2 = α2

x3 = α3

...

xn = αn

Fig. 1. The modular black box model for a ∈ Z[x1, ..., xn]

The advantage of the black box representation is that computing Ba(α, p) can be much faster
than computing a(α) mod p in the sparse representation. For example, the black box representation
of the polynomial a = (x1 − x2)(x1 − x3) · · · (x1 − xn) can be represented using O(n) space and
it can be evaluated using just n − 1 subtractions and n − 2 multiplications. But, in the sparse
representation, a has 2n−1 terms which is exponential in n.

In [13], Kaltofen and Trager presented algorithms for factoring polynomials and computing the
GCD of polynomials given by black boxes. In [7], Kaltofen and Diaz improved the black box GCD
algorithm of Kaltofen and Trager [13]. The only other black box GCD algorithm that we know of
is Lecerf and van der Hoeven’s algorithm in [19] which uses ideas similar to the sparse rational
function interpolation of Cuyt and Lee [6]. The recent Hu–Monagan [11] and Huang–Monagan [12]
GCD algorithms are not black box algorithms and cannot easily be made into black box algorithms.

In [13], Kaltofen and Trager also presented an algorithm that, given a rational function f = a/b,
outputs black boxes for polynomials c = a/g/u and d = b/g/u for some unit u. Kaltofen and Trager
called this operation the separation of numerators from their denominators. In [14], Kaltofen and
Yang improved on Kaltofen and Trager’s algorithm. One way to compute g = gcd(a, b) is to first
compute c and d then use g = a/c or g = b/d to obtain g. We will compare this approach using
Kaltofen–Yang with our new algorithm. Kaltofen and Yang, Kaltofen and Diaz, and van der Hoeven
all reduce the problem of computing black box GCDs to polynomial interpolation. We pair these
algorithms with the Ben-Or/Tiwari sparse interpolation algorithm [1]. We do not use Giorgi et. al.
[10] which is less efficient in our multivariate context.

Our new algorithm uses the Hensel lifting algorithm from Chen and Monagan [5]. It first com-
putes pp(g, x1), the primitive part of g = gcd(a, b) in x1, using Hensel lifting. It recovers the
variables xj for j = 2, 3, . . . , n in pp(g, x1) from bivariate images of pp(g, x1) in x1 and xj which are
obtained by probing the black boxes for a and b. Bivariate images are used to recover the leading
coefficient of pp(g, x1). Then, in a second step, it computes cont(g, x1), the content of g in x1 recur-
sively. An advantage of our approach is that we can easily omit computing cont(g, x1). Thus, our
algorithm will be faster than Kaltofen–Diaz when pp(g, x1) is smaller than g. One application where
the content is not needed is when we want to solve {a(x1, x2, . . . , xn) = 0, b(x1, x2, . . . , xn) = 0} for
x1. Our algorithm outputs the GCD in the sparse representation as in van der Hoeven–Lecerf [20].

To further improve efficiency, we recover the square-free factorization of pp(g, x1). We can do
this without increasing the overall asymptotic cost by first computing the square-free part of the
bivariate images of g in x1 and xj then using the bivariate Hensel lifting algorithm from [17] to
recover a square-free factorization in x1 and xj . This gives our algorithm a second advantage; it
will be faster whenever the square-free factors of pp(g, x1) are smaller than pp(g, x1).

A New Black Box GCD Algorithm Using Hensel Lifting 3

All previous black box GCD algorithms work over fields of large cardinality. To compute
monic(g) over Q, for efficiency, we use a modular GCD algorithm, that is, we compute g modulo
primes and recover the rational coefficients of monic(g) using Chinese remaindering and rational
number reconstruction (see [22,15]). If we don’t do this, there is a large efficiency loss caused by
arithmetic with large intermediate rationals in the black-box GCD algorithms.

In the modular GCD algorithm, the primes used must not divide the integer leading coefficient
of g. In the sparse representation, Brown [3] imposes this requirement by requiring that a prime p
not divide the leading coefficient of the input polynomial a. In the black box model, we do not have
access to the leading coefficient of a, so we cannot enforce this requirement a priori, which means
that our computed GCD modulo p may not be a multiple of g modulo p. In our implementation we
will, eventually, discard such bad images.

We have implemented our GCD algorithm in Maple with some subalgorithms coded in C for
efficiency. Our code is available for download at http://www.cecm.sfu.ca/~mmonagan/code/BBMGCD/ .
It uses 62 bit primes, which are the largest machine primes that can be used in Maple.

Our paper is organized as follows. Our new algorithm for computing the GCD of polynomials a
and b in Z[x1, ..., xn] modulo a prime p where a and b are given as black boxes for their evaluation
is presented in Section 3. We present also an improvement to the CMSHL algorithm created by
Chen and Monagan in [4]. Section 4 gives a complexity analysis for our algorithm. Section 5 presents
three benchmarks that compare our new algorithm with the two other approaches mentioned above.
Section 6 presents implementation details for some of the subalgorithms that we use.

2 Definitions and Notation

We fix the lexicographical monomial ordering of polynomials in this paper with x1 > · · · > xn. For
a polynomial a ∈ Z[x1, ..., xn], we denote LC(a) as the leading coefficient of a and LM(a) as the
leading monomial. We say a is monic if LC(a) = 1 and define monic(a) = a/LC(a). We denote the
number of terms in the polynomial a by #a.

Definition 1. Let a, b ∈ Z[x1, ..., xn]. Then g = gcd(a, b) is the greatest common divisor (GCD)
of a and b if (i) g divides a and b, (ii) every common divisor of a and b divides g, and (iii)
sign(LC(g)) = +1. Note that (iii) imposes uniqueness on g.

Definition 2. Let a ∈ Z[x2, ..., xn][x1] with degree d = deg(a, x1). If a =
∑d

i=0 aix
i
1, we define

LC(a, x1) = ad, a polynomial in Z[x2, ..., xn]. We define the content of a in x1 by cont(a, x1) =
gcd(a0, a1, ..., ad), a polynomial in Z[x2, ..., xn]. If cont(a, x1) = 1, we say a is primitive in x1. We
define the primitive part of a in x1 by pp(a, x1) = a/cont(a, x1).

Definition 3 (Definition 8.1 in [9]). Let a ∈ Zp[x1, ..., xn] be primitive in x1. We say a is
square-free if it has no repeated factors, that is, there exists no b with deg(b) ≥ 1 such that b2|a.
The square-free factorization of a is a =

∏r
i=1 a

i
i where each ai is square-free and gcd(ai, aj) = 1

for i ̸= j. The square-free part of a, denoted sqf(a), is defined as sqf(a) =
∏r

i=1 ai.

Lemma 1. Let a ∈ Z[x1, ..., xn], a ̸= 0 and g = gcd(a, ∂a/∂x1). Then a/g = sqf(pp(a, x1)) since
cont(a, x1)|g.

Example 1. Given g = 3(x2 − x3)(x1 − x2)
2(x1 + x3), we have cont(g, x1) = 3(x2 − x3) and

pp(g, x1) = (x1 − x2)
2(x1 + x3). The square-free factorization of pp(g, x1) is (x1 + x3)

1(x1 − x2)
2

and sqf(pp(g, x1)) = (x1 − x2)(x1 + x3).

4 Michael Monagan and Garrett Paluck

Our black box GCD algorithm will first compute the square-free factorization (x1−x2)
2(x1+x3)

of pp(g, x1) in factored form. It will then compute cont(a, x1)/3 = (x2 − x3). Here all factors have
only two terms. This is faster than computing monic(g) = (x2−x3)(x1−x2)

2(x1−x3) in expanded
form which has 10 terms.

3 Our New Black Box GCD Algorithm

Let a and b be polynomials in Z[x1, ..., xn] with associated modular black boxes Ba and Bb, and
let g = gcd(a, b). In this section, we present two new algorithms. Algorithm 2: MHL_BB_PGCD
computes monic(g) mod p in Zp[x1, ..., xn] for a prime p and Algorithm 3: CM_BB_SHL_GCD
lifts monic(sqf(gcd(a(x1, α), b(x1, α)))) mod p to monic(sqf(gcd(a, b))) mod p for an evaluation point
α ∈ Zn−1

p using sparse Hensel lifting. We combine Algorithm 2 with Chinese remaindering and
rational number reconstruction (see [22,15]) to compute monic(g) ∈ Q[x1, ..., xn] from the modular
images. We shall refer to the algorithm that computes monic(g) as the BB_MGCD algorithm.
As it’s a conceptually simple algorithm, we will not provide pseudocode for it. The BB_MGCD
algorithm is similar in concept to Algorithm 7.1 in [9].

Computing the degrees of a, b and g Algorithm 2 requires the degree estimates deg(a, xi),
deg(b, xi), and deg(g, xi) for 1 ≤ i ≤ n. To compute deg(a, xi), we pick α ∈ Zn

p at random then
apply Algorithm 1 from [4] to interpolate ai = a(α1, ..., αi−1, xi, αi+1, ..., αn) mod p. We have
deg(ai, xi) = deg(a, xi) with high probability (see [4,7]). It is possible that deg(ai, xi) < deg(a, xi).
This is unavoidable in the black box model.

Algorithm 1: UnivInterp: Interpolate a(xi) mod p

1 Input: A modular black box Ba for a ∈ Z[x1, ..., xn], α ∈ Zn
p , i ∈ N, and a large prime p.

2 Output: A polynomial b = a(α1, ..., αi−1, xi, αi+1, ..., αn) mod p s.t. deg(b, xi) = deg(a, xi) w.h.p.
3 Reference: Kaltofen and Diaz [7], Chen and Monagan [4].
4 b← 0. M ← 1. k ← −1.
5 repeat
6 k ← k + 1.
7 Pick βk ∈ Z∗

p at random s.t. βk ̸= βj for 0 ≤ j ≤ k − 1.
8 yk ← Ba((α1, α2, ..., αi−1, βk, αi+1, ..., αn), p).
9 vk ← (yk − b(βk))/M(βk).

10 b← b+ vk ·M .
11 M ←M · (xi − βk).
12 until vk = 0;
13 return b.

3.1 The MHL_BB_PGCD Algorithm

Consider the following square-free factorization

g = gcd(a, b) = h

r∏
ρ=1

fρ
ρ

A New Black Box GCD Algorithm Using Hensel Lifting 5

where (i) h = cont(g, x1) is in Z[x2, ..., xn], (ii) deg(fρ, x1) ≥ 0, (iii) fρ is primitive and square-free
in Z[x2, ..., xn][x1], and (iv) gcd(fi, fj) = 1 for i ̸= j. We shall now describe our new algorithm
which computes monic(fρ) modulo a prime p for 1 ≤ ρ ≤ r.

We assume that p is a large prime (e.g. p = 261 + 15) chosen randomly in advance and that we
have degree estimates dai, dbi and dgi for deg(a, xi), deg(b, xi), and deg(g, xi) for 1 ≤ i ≤ n.

We first pick an evaluation point α = (α2, ..., αn) ∈ Zn−1
p at random, then interpolate a1 =

a(x1, α) mod p and b1 = b(x1, α) mod p in Zp[x1] using dense interpolation and probes to the black
boxes Ba and Bb such that deg(a1, x1) = da1 and deg(b1, x1) = db1. We use at least da1+2 probes
when interpolating a1 to verify that our degree estimate da1 is correct. We do likewise for b1. In
fact, whenever we do an interpolation in this section, we use one extra probe than necessary to
check our degree estimates. If they do not agree, we stop the algorithm and output FAIL.

Next we compute g1 = gcd(a1, b1) in Zp[x1], check that deg(g1) = dg1, and compute the
square-free factorization of g1. Let g1 =

∏r
ρ=1 f̂

ρ
ρ be the square-free factorization of g1 where

f̂ρ = (1/λρ)fρ(x1, α) mod p and λρ = LC(fρ(x1, α)) ∈ Z for 1 ≤ ρ ≤ r. Let ĥ = λhh(α) mod p with
λh =

∏r
ρ=1 λ

ρ ∈ Z. To be explicit,

g(x1, α) = h(α)f1(x1, α)
1 · · · fr(x1, α)

r

= h(α)
(
λ1f̂1

)1
· · ·
(
λrf̂r

)r
w.h.p.

= h(α)

(
r∏

ρ=1

λρ
ρ

)
︸ ︷︷ ︸

ĥ

f̂1
1 · · · f̂r

r︸ ︷︷ ︸
g1

.

The coefficients λρ can be recovered later after Chinese remaindering and the content h can be
recovered recursively. For most choices of α and p, we will have (i) deg(fρ(x1, α), x1) = deg(f̂ρ, x1),
(ii) fρ = monic(fρ(x1, α)) for 1 ≤ ρ ≤ r and (iii) gcd(f̂i, f̂j) = 1 for all i ̸= j which is needed for
Hensel lifting.

Let gj = monic(pp(g(x1, ..., xj , αj+1, ..., αn), x1)) mod p and let f̂ρ,1 = f̂ρ. Let
f̂ρ,j = monic(fρ(x1, ..., xj , αj+1, ..., αn)) for 2 ≤ j ≤ n which we will compute sequentially. We call
the CM_BB_SHL_GCD algorithm (to be described shortly) with inputs Ba,Bb, α, p, (f̂ρ,1, ..., f̂ρ,r),
da, db, and dg to Hensel lift f̂ρ,1(x1) to f̂ρ,2(x1, x2), then lift f̂ρ,2(x1, x2) to f̂ρ,3(x1, x2, x3), etc. After
the jth Hensel lifting step we’ve computed f̂ρ,j s.t. sqf(gj) =

∏r
ρ=1 f̂ρ,j mod p and

monic(f̂ρ,j(xj = αj)) = f̂ρ,j−1 mod p. When the CM_BB_SHL_GCD algorithm terminates, it
returns either f̂ρ,n such that sqf(gn) =

∏r
ρ=1 f̂ρ,n (mod p) or FAIL if it gets unlucky in its choice of

evaluation points. If this happens, the CM_BB_SHL_GCD algorithm must restart with a different
α and a new prime p. If we do not want h, we can stop here and return f̂ =

∏r
ρ=1 f̂

ρ
ρ,n.

To recover monic(cont(g, x1)), we construct two new modular black boxes
Bc,Bd : (Zn−1, p) → Zp such that for β ∈ Zp and γ ∈ Zn−1

p , Bc(γ, p) computes a(β, γ)/f̂(β, γ)

mod p and Bd(γ, p) computes b(β, γ)/f̂(β, γ) mod p. The black boxes return FAIL if f̂ evaluates
to 0 in which case we need to restart with a different γ. We use our MHL_BB_PGCD algorithm
to get the GCD of Bc and Bd over Zp[x2, ..., xn] recursively.

We present the MHL_BB_PGCD algorithm as Algorithm 2.

6 Michael Monagan and Garrett Paluck

Algorithm 2: MHL_BB_PGCD - Computes monic(gcd(a, b)) mod p for black boxes
Input: Modular black boxes Ba and Bb for a, b ∈ Z[x1, ..., xn], X = [x1, ..., xn], n ∈ N,

prime p, degree estimates dai ≤ deg(a, xi), dbi ≤ deg(b, xi), and
dgi ≥ deg(gcd(a, b), xi) (1 ≤ i ≤ n).

Output: g ∈ Zp[x1, x2, ..., xn] s.t. g = monic(gcd(a, b)) mod p or FAIL.
1 Pick α = (α2, ..., αn) ∈ (Zp\{0})n−1 at random.
2 Interpolate a1 = a(x1, α) ∈ Zp[x1] via da1 + 2 probes to Ba.
3 if deg(a1, x1) ̸= da1 then return FAIL end
4 Interpolate b1 = b(x1, α) ∈ Zp[x1] via db1 + 2 probes to Bb.
5 if deg(b1, x1) ̸= db1 then return FAIL end
6 g1 ← gcd(a1, b1) ∈ Zp[x1]. //g1 is monic
7 if deg(g1, x1) ̸= dg1 then return FAIL end
8 Find the square-free factorization

∏r
ρ=1 f̂

ρ
ρ,1 of g1 in Zp[x1].

9 if n = 1 then return
∏r

ρ=1 f̂
ρ
ρ,1 end

//Calculate the primitive part of gcd(a mod p, b mod p)
10 [f̂1,n, ..., f̂r,n]← CM_BB_SHL_GCD(Ba,Bb, n, [f̂1,1, ..., f̂r,1], α, p, da, db, dg).
11 if CM_BB_SHL_GCD returned FAIL then return FAIL end
12 f̂ ←

∏r
ρ=1 f̂ρ,n

ρ ∈ Zp[x1, ..., xn]. //f̂ = monic(pp(gcd(a, b), x1)) mod p

13 if the content of gcd(a, b) in x1 is not needed return f̂ end
14 if dgi − deg(f̂ , xi) = 0 for 2 ≤ i ≤ n then return f̂ (there is no content) end

// Calculate monic(cont(g, x1)) mod p
15 Pick β ∈ Zp \ {0} at random. //fix x1

16 Create a modular black box Bc : (Zn−1, p)→ Zp which for input γ ∈ Zn−1
p computes

Ba((β, γ), p)/f̂(β, γ) mod p if f̂(β, γ) ̸= 0 and FAIL otherwise.
17 Create a modular black box Bd : (Zn−1, p)→ Zp which for input γ ∈ Zn−1

p computes
Bb((β, γ), p)/f̂(β, γ) mod p if f̂(β, γ) ̸= 0 and FAIL otherwise.

18 for i from 2 to n do
19 DAi ← dai − deg(f̂ , xi).

DBi ← dbi − deg(f̂ , xi).
DGi ← dgi − deg(f̂ , xi).

20 end
21 h←MHL_BB_PGCD(Bc,Bd, [x2, ..., xn], n− 1, p,DA,DB,DG).
22 if MHL_BB_PGCD returned FAIL then return FAIL end
23 Set g = h · f̂ .
24 return g.

A New Black Box GCD Algorithm Using Hensel Lifting 7

Example 2. Consider the polynomials

a = 6(7x2 − 3x3)(2x1 + 4x2 + 1)(x1 − x3)
3(x2

1 + x2 + x3 + 1),

b = 4(7x2 − 3x3)(2x1 + 4x2 + 1)(x1 − x3)
3(x1 + x2

2 + x3 + 1)

in Z[x1, x2, x3] and let Ba and Bb be the modular black box representations of a and b respectively.
We have g = gcd(a, b) = 2(7x2−3x3)(2x1+4x2+1)(x1−x3)

3, pp(g, x1) = (2x1+4x2+1)(x1−x3)
3,

cont(g, x1) = 2(7x2 − 3x3), and

monic(g) = (x2 − 3
7x3)(x1 + 2x2 +

1
2)(x1 − x3)

3.

We demonstrate how algorithm MHL_BB_PGCD computes gm = monic(g) mod p for p = 31.
MHL_BB_PGCD is given degree estimates for a, b and g that are correct with high probability.
In this case, the degrees are da = (6, 3, 5), db = (5, 4, 5) and dg = (4, 2, 4) for a, b and g respectively.

Let α = (α2, α3) = (7, 13). The MHL_BB_PGCD algorithm begins by using dense interpolation
and probes to the Ba and Bb to recover a1 = a(x1, α2, α3) mod p = 23x6

1 + 10x5
1 + 21x4

1 + 18x3
1 +

2x2
1 + 29x1 + 21, and b1 = b(x1, α2, α3) mod p = 19x5

1 + 3x4
1 + 4x3

1 + 11x2
1 + 8x1 + 17. After dense

interpolation, we calculate

g1 = gcd(a1, b1) = x4
1 + 22x3

1 + 19x2
1 + 24x1 + 27.

Next we compute the square-free factorization of g1 and obtain

g1 = (x1 + 30)(x1 + 18)3. (1)

Next we use the CM_BB_SHL_GCD algorithm to lift the factors of sqf(g1), namely x1 + 30 and
x1 + 18, to get

sqf(pp(gm, x1)) = (x1 + 2x2 + 16)(x1 + 30x3) ∈ Zp[x2, x3][x1].

We include the multiplicities calculated in (1) to get

pp(gm, x1) = (x1 + 2x2 + 16)(x1 + 30x3)
3.

Next MHL_BB_PGCD makes a recursive call to calculate the GCD of the polynomial contents
of a and b over Zp. This will return cont(gm, x1) = (x2 + 4x3). MHL_BB_PGCD concludes by
returning gm = (x2 + 4x3)(x1 + 2x2 + 16)(x1 + 30x3)

3. We note the factors of gm are monic in lex
order with x1 > x2 > x3.

♢

The CM_BB_SHL_GCD Algorithm The CM_BB_SHL_GCD algorithm has the following
input and output:

Input: Modular black boxes Ba,Bb : (Zn, p)→ Zp, f̂ρ,1 ∈ Zp[x1](1 ≤ ρ ≤ r), α ∈ Zn−1
p , a prime p,

degree estimates dai ≤ deg(a, xi), dbi ≤ deg(b, xi), and dgi ≥ deg(g, xi)(1 ≤ i ≤ n), X = [x1, ..., xn],
and n ∈ N s.t.

(i) gcd(f̂k,1, f̂l,1) = 1 for k ̸= l in Zp[x1],

8 Michael Monagan and Garrett Paluck

(ii) sqf(g1) =
∏r

ρ=1 f̂ρ,1 mod p ∈ Zp[x1].
(iii) f̂ρ,1 is monic in x1 for all 1 ≤ ρ ≤ r.

Output FAIL or f̂ρ,n ∈ Zp[x1, ..., xn](1 ≤ ρ ≤ n) s.t.

(i) sqf(gn) =
∏r

ρ=1 f̂ρ,n mod p ∈ Zp[x1, ..., xn],
(ii) monic(f̂ρ,n(x1, α)) = f̂ρ,1 mod p for all 1 ≤ ρ ≤ r,
(iii) f̂ρ,n is monic in lex x1 > x2 > · · · > xn for 1 ≤ ρ ≤ r.

We have modified the CMBBSHL algorithm created by Chen and Monagan in 2024 [4]. Our
algorithm lifts the monic square-free factors f̂ρ,1 of g1 to get the monic square-free factors of pp(g, x1)

mod p. It lifts f̂ρ,1(x1) to f̂ρ,2(x1, x2), then lifts f̂ρ,2(x1, x2) to f̂ρ,3(x1, x2, x3), etc. After the jth

Hensel lifting step, sqf(gj) =
∏r

ρ=1 f̂ρ,j mod p and monic(f̂ρ,j(xj = αj)) = f̂ρ,j−1 mod p. After the
nth step, sqf(gn) =

∏r
ρ=1 f̂ρ,n mod p.

CMBBSHL assumes fρ(x1, ..., xj , αj+1, ..., αn) and fρ(x1, ..., xj−1, αj , ..., αn) have the same sup-
ports in x1, ..., xj−1 for 2 ≤ j ≤ n. This is true with high probability if p is large and αi is chosen
at random from Zp (see [5]). Our CM_BB_SHL_GCD assumes likewise.

We present the CM_BB_SHL_GCD algorithm as Algorithm 3 and the direct sub-algorithm
CM_BB_SHL_GCD_stepj as Algorithm 4.

To reduce the number of black box probes that algorithm CMBBSHL of Chen and Monagan
does, we make the following change. Chen and Monagan interpolate the bivariate images

Ak = a(x1, Yk, xj , αj+1, . . . , αn) and Bk = b(x1, Yk, xj , αj+1, . . . , αn)

in Zp[x1, xj] then compute their gcd Gk = gcd(Ak, Bk) then compute Sk = gcd(Gk, ∂Gk/∂x1) then
compute the square-free part Gsf of Gk using Gsf = Gk/Sk. These are all bivariate computations
in Zp[x1, xj]. Instead, we use rational function interpolation in steps 25 and 26 to interpolate xj in
monic(Gsf) ∈ Zp(xj)[x1] from unvariate images in Zp[x1] computed in steps 16, 18, and 19. Then,
we clear fractions in steps 27 and 28 to obtain Gsf ∈ Zp[x1, xj]. This avoids interpolating xj in Ak

and Bk. It is faster whenever deg(Ak, xj) and deg(Bk, xj) are greater than deg(Gsf , xj).

Algorithm 3: CM_BB_SHL_GCD

Input: Modular black boxes Ba, Bb for a, b ∈ Z[x1, ..., xn], n ∈ Z, f̂ρ,1 ∈ Zp[x1](1 ≤ ρ ≤ r) s.t.
conditions (i)-(iii) of the input are satisfied, α ∈ Zn−1

p , a prime p, degree estimates dai, dbi
and dgi for deg(a, xi), deg(b, xi), and deg(g, xi) (1 ≤ i ≤ n).

Output: FAIL or f̂ρ,n ∈ Zp[x1, ..., xn](1 ≤ ρ ≤ r) s.t. conditions (i)-(iii) of the output are satisfied.
1 for j from 2 to n do
2 [f̂1,j , ..., f̂r,j]← CM_BB_SHL_GCD_stepj(Ba, Bb, [f̂1,j−1, ..., f̂r,j−1], α, p, da, db, dg, j).
3 if CM_BB_SHL_GCD_stepj returned FAIL then return FAIL end
4 end
5 return [f̂1,n, ..., f̂r,n]

In step 35 of Algorithm 4, BivariateHenselLift performs a bivariate Hensel lift. Chen and Mon-
agan improved our monic bivariate Hensel lifting algorithm from [17] to treat the non-monic case
(see Algorithm 14 in [4]).

A New Black Box GCD Algorithm Using Hensel Lifting 9

Algorithm 4: CM_BB_SHL_GCD_stepj: Hensel lift xj

Input: Modular black boxes Ba, Bb for a, b ∈ Z[x1, ..., xn], f̂ρ,j−1 ∈ Zp[x1, ..., xj−1](1 ≤ ρ ≤ r) s.t.
monic(sqf(gj(xj = αj))) =

∏r
ρ=1 f̂ρ,j−1, α ∈ Zn−1, a prime p, degree estimates dai, dbi,

dgi, and j ≥ 2 ∈ Z.
Output: f̂ρ,j ∈ Zp[x1, ..., xj](1 ≤ ρ ≤ r) s.t. (i) sqf(gj) =

∏r
ρ=1 f̂ρ,j , and (ii) monic(f̂ρ,j(xj = αj))

= f̂ρ,j−1 mod p (1 ≤ ρ ≤ r) or FAIL.
1 Let f̂ρ,j−1 =

∑dfρ
i=0 σρ,i(x2, ..., xj−1)x

i
1 where dfρ = deg(f̂ρ,j−1, x1) for 1 ≤ ρ ≤ r.

2 Let σρ,i =
∑sρ,i

k=1 cρ,ikMρ,ik where Mρ,ik are monomials in x2, ..., xj−1 and sρ,i = #σρ,i.
3 Pick non-zero β2, ..., βj−1 ∈ Zp at random.
4 Sρ,i ← {mρ,ik = Mρ,ik(β2, ..., βj−1) for 1 ≤ k ≤ sρ,i} for 1 ≤ ρ ≤ r, 0 ≤ i ≤ dfρ.
5 if any |Sρ,i| ̸= sρ,i return FAIL.
6 Let sj be the maximum of sρ,i.

// Compute sj images of the factors in Zp[x1, xj].
7 d1, d2 ← dgj , dgj .
8 Pick γ0, ..., γd1+d2 unique points at random from Zp.
9 for k from 1 to sj do

10 Let Yk = (x2 = βk
2 , ..., xj−1 = βk

j−1).
11 for i from 0 to d1 + d2 do
12 Interpolate Aki = a(x1, Yk, γi, αj+1, ..., αn) ∈ Zp[x1] via probes to Ba.
13 if deg(Aki, x1) ̸= da1 return FAIL.
14 Interpolate Bki = b(x1, Yk, γi, αj+1, ..., αn) ∈ Zp[x1] via probes to Bb.
15 if deg(Bki, x1) ̸= db1 return FAIL.
16 Gki ← gcd(Aki, Bki) ∈ Zp[x1].
17 if deg(Gki, x1) ̸= dg1 return FAIL.
18 Ski ← gcd(Gki, ∂Gki/∂x1) ∈ Zp[x1].
19 Gsf,i ← quo(Gki, Ski) ∈ Zp[x1]. // Gsf,i = sqf(Gki) mod p, up to a constant in Zp.
20 if deg(Gsf,i, x1) ̸=

∑r
ρ=1 dfρ return FAIL.

21 end
22 Interpolate Gsf ∈ Zp[x1, xj] s.t. Gsf (x1, γi) = Gsf,i for 0 ≤ i ≤ d1 + d2.
23 dsf ← deg(Gsf , x1).
24 if d2 > 0 then
25 M̂ =

∏d1+d2
i=0 (xj − γi)

26 Compute the rational function Ni/Di s.t. Ni/Di ≡ coeff(Gsf , x1, i) mod M̂ for 0 ≤ i < dsf .
27 L←LCM(D0, ..., Ddsf−1) ∈ Zp[xj].
28 Gsf ← Lx

dsf
1 +

∑dsf−1

i=0
LNi
Di

xi
1.

29 d1, d2 ← max(deg(N0, xj), ..., deg(Ndsf−1, xj)),max(deg(D0, xj), ..., deg(Ddsf−1, xj)).
30 end
31 Gsfm ← monic(Gsf) mod p. // make Gsf monic in xj .
32 Fρ,k ← f̂ρ,j−1(x1, Yk) ∈ Zp[x1] for 1 ≤ ρ ≤ r.
33 if any deg(Fρ,k) < dfρ (for 1 ≤ ρ ≤ r) return FAIL.
34 if gcd(Fρ,k, Fϕ,k) ̸= 1 for any 1 ≤ ρ < ϕ ≤ r return FAIL.
35 f̄ρ,k ← BivariateHenselLift(Gsfm, [F1,k, ..., Fr,k], αj , p).
36 end
37 if j = 2 return [f̄1,1, ..., f̄r,1].
38 Let f̄ρ,k =

∑tρ
l=1 αρ,klM̃ρ,l(x1, xj) ∈ Zp[x1, xj] for 1 ≤ k ≤ sj , for 1 ≤ ρ ≤ r where tρ = #f̄ρ,k.

39 for ρ from 1 to r do
40 for l from 1 to tρ do
41 i← deg(M̃ρ,l, x1).
42 Solve the linear system {

∑sρ,i
k=1 m

t
ρ,ikcρ,lk = αρ,tl for 1 ≤ t ≤ sρ,i } for cρ,lk ∈ Zp.

43 Tl ←
∑sρ,i

k=1 cρ,lkMρ,ik(x2, ..., xj−1).
44 end
45 f̂ρ,j ←

∑tρ
l=1 TlM̃ρ,l(x1, xj).

46 end
47 return f̂ρ,j(1 ≤ ρ ≤ r)

10 Michael Monagan and Garrett Paluck

4 Complexity Analysis

Let g = gcd(a, b). In this section, we determine the complexity of Algorithm 2: MHL_BB_PGCD
to compute the square-free factors f1, f2, ..., fr of pp(g, x1). We do not include the cost of computing
the square-free factors of cont(g, x1). The complexity is given in terms of the size of the inputs a and
b and the size of the outputs f1, f2, ..., fr. Throughout the analysis di = max(deg(a, xi),deg(b, xi))
for 1 ≤ i ≤ n, D = max(d1, ..., dn), Ca and Cb are the number of arithmetic operations in Zp to
evaluate Ba and Bb respectively and #F =

∑r
ρ=1 #fρ is the number of terms in the square-free

factors. In rare cases, the number of terms of the output can be larger than the number of terms
in the input.

Algorithm CM_BB_SHL_GCD calls algorithm CM_BB_SHL_GCD_stepj n − 1 times to
recover x2, x3, ..., xn one at a time in the square-free factors of pp(g, x1). This means we lose a factor
of n − 1 in efficiency when compared with algorithms like Kaltofen-Diaz which can interpolate all
variables in g simultaneously. The core of Algorithm CM_BB_SHL_GCD_stepj is steps 9 to 36
whose cost is multiplied by sj . Let dfρ = deg(fρ, x1) and let fρ =

∑dfρ
i=0 τρ,i(x2, ..., xn)x

i
1. Step 2

defines
sρ,i = #σρ,i(x2, ..., xj−1) = #τρ,i(x2, ..., xj−1, αj , ..., αn).

Let sj be the the maximum number of terms in any of the coefficients σρ,i at step j, that is,
let sj = maxρ,i sρ,i and let sT =

∑n
j=2 sj . The number of terms in σρ,i will only increase with

subsequent calls to Algorithm 4, thus s2 ≤ s3 ≤ · · · ≤ sn. It follows that sT ≤ (n − 1)sn and
sn ≤ maxρ,i #τρ,i. The ratio #g/sn represents a speedup of our algorithm over an algorithm that
interpolates g.

In Example 1, we have pp(g, x1) = f1f
2
2 where f1 = x1 + x3 and f2 = x1 − x2. In this example,

we have s2 = s3 = 1 and #g = 10. In Example 2, we have pp(g, x1) = f1f
3
3 where f1 = x1+2x2+

1
2

and f3 = x1 − x3, so s2 = 1, s3 = 2 and #g = 21.

4.1 CM_BB_SHL_GCD Complexity

We give the following theorem for the complexity of Algorithm 3: CM_BB_SHL_GCD.

Theorem 1. Let p be a large prime and, a, b ∈ Z[x1, ..., xn]. If Algorithm CM_BB_SHL_GCD
does not return FAIL, then the total number of arithmetic operations in Zp for lifting f̂ρ,1 to f̂ρ,n
using Algorithm CM_BB_SHL_GCD_stepj is at most

O (sT (d1D(d1+D+Ca+Cb) + (n+D)#F + nD)) . (2)

From (2), one sees that the total number of probes to the black boxes is O(sT d1D).

Proof. Let daj = deg(a, xj), dbj = deg(b, xj), dgj = deg(g, xj), and d̃j = deg(sqf(gcd(a, b)), xj)
for 1 ≤ j ≤ n. In step 12 of Algorithm 4, we use dense interpolation to get the univariate image
a(x1, Yk, γi, αj+1, ..., αn). This operation does O(da1) probes to Ba and O(da21) arithmetic oper-
ations in Zp. The total cost of step 12 for the sj interpolations is O(sjda1dgjCa) + O(sjda

2
1dgj)

⊆ O(sjd1djCa) + O(sjd
2
1dj) arithmetic operations in Zp since dj ≥ daj ≥ dgj for 1 ≤ j ≤ n.

Similarly, the total cost of step 14 is O(sjdb1dgjCb) +O(sjdb
2
1dgj) ⊆ O(sjd1djCb) +O(sjd

2
1dj).

For step 16, we use the Euclidean algorithm to compute the GCD of Aki and Bki in Zp[x1]. The
Euclidean algorithm does O(d21) arithmetic operations in Zp. The total cost of step 16 is O(sjd

2
1dj)

arithmetic operations in Zp.

A New Black Box GCD Algorithm Using Hensel Lifting 11

For step 18, we again use the Euclidean algorithm which does O(dg21) arithmetic operations in
Zp. The division in Zp[x1] in step 19 can also be done with O(dg21) arithmetic operations. Since
dg1 ≤ d1 and dgj ≤ dj the total cost of steps 18 and 19 is O(sjd

2
1dj) arithmetic operations in Zp.

For step 25, the polynomial M̂ =
∏d1+d2

i=0 (xj − γi) needs to be expanded. Expanding M̂ one
factor at a time uses O(dg2j) arithmetic operations in Zp as d1 + d2 ≤ 2dgj . The total cost of step
25 is O(sjd

2
j).

Step 26 performs rational function interpolation on each of the polynomial coefficients of Gsf .
Rational function interpolation uses the extended Euclidean algorithm (see Section 5.7 in [8]) to
compute the rational functions Ni/Di for 0 ≤ i < dsf where each Ni, Di ∈ Zp[xj]. One application
of rational function interpolation does O(dg2j) arithmetic operations in Zp. Since dgj ≤ dj and
dsf ≤ dg1 ≤ d1, the total cost of step 26 is O(sjd1d

2
j).

Step 27 computes the least common multiple (LCM) of the polynomials Di for 0 ≤ i < dsf
where deg(Di, xj) ≤ dgj . We compute L = LCM(D0, D1, ..., Ddsf−1) ∈ Zp[xj] by first computing
LCM(D0, D1), then LCM(LCM(D0, D1), D2) and so on until we compute the least common multiple
of all dsf − 1 polynomials. As L is the leading coefficient of Gsf , its degree, as well as the degree
of any of the intermediate polynomials produced, is at most dgj . We compute the LCM of two
polynomials using the formula LCM(a, b) = ab/ gcd(a, b) for polynomials a, b ∈ Zp[x]. Clearly, any
one LCM computation does O(dg2j) arithmetic operations in Zp as deg(L, xj) ≤ dgj . Since dgj ≤ dj
and dsf ≤ dg1 ≤ d1, the total cost of step 27 is O(sjd1d

2
j).

For step 28, we perform the division L/Di for 0 ≤ i < dsf . Each division does O(dg2j) arithmetic
operations in Zp. So, the total cost of step 28 is O(sjd1d

2
j).

Step 32 evaluates f̂ρ,j−1(x1, β
k
2 , ..., β

k
j−1) for 1 ≤ ρ ≤ r. If we first compute the powers of βk

i

using
∑j−1

i=2 dgi ≤ (j − 2)D multiplications, we can evaluate the terms in the factors f̂ρ,j−1 using
(j − 2)

∑r
ρ=1 #f̂ρ,j−1 multiplications. Since j − 2 < n and #f̂ρ,j−1 ≤ #fρ, the total cost of step 32

is O(sjnD + sjn
∑r

ρ=1 # fρ) arithmetic operations in Zp.
For step 35, we use Monagan and Paluck’s bivariate Hensel lifting algorithm from [16,17] which

does O(d̃1
2
d̃j+d̃1d̃j

2
) arithmetic operations in Zp. The total cost of step 35 is O(sj(d̃1

2
d̃j+d̃1d̃j

2
)) ⊆

O(sj(d
2
1dj + d1d

2
j)).

Using Zippel’s algorithm [24], the cost of solving the Vandermonde system in step 42 for the
coefficients of any given factor f̂ρ,j−1 is d̃j

∑dfρ−1
i=0 O(s2ρ,i) ⊆ O(d̃jsj#f̂ρ,j−1) since

∑dfρ−1
i=0 sρ,i <

#f̂ρ,j−1. The total cost to solve for the coefficients of all factors f̂ρ,j is O(sj d̃j
∑r

ρ=1 #f̂ρ,j−1) ⊆
O(sjdj

∑r
ρ=1 #fρ).

Summing the costs, the total number of arithmetic operations in Zp for Algorithm
CM_BB_SHL_GCD_stepj to recover xj is

O(sj(d
2
1dj + d1d

2
j + d1dj(Ca+Cb) + (n+dj)

r∑
ρ=1

#fρ + nD)). (3)

Since dj ≤ D, sT =
∑n

j=2 sj , and
∑r

ρ=1 #fρ = #F , summing (3) for j = 2, 3, ..., n gives (2).

4.2 MHL_BB_PGCD Complexity

The following theorem gives the complexity of Algorithm 2: MHL_BB_PGCD for computing
monic(pp(gcd(a, b), x1)).

12 Michael Monagan and Garrett Paluck

Theorem 2. Let p be a large prime and let a, b ∈ Z[x1, ..., xn] and let g = monic(pp(gcd(a, b), x1))
mod p. If algorithm MHL_BB_PGCD does not return FAIL, the total number of arithmetic oper-
ations in Zp in the worst case for computing g using Algorithm MHL_BB_PGCD is

O
(
sT
(
D2(D + Ca + Cb) + (n+D)#F + nD

))
. (4)

From (4) the number of probes to Ba and Bb is O(sTD
2).

Proof. Step 2 of Algorithm MHLBBGCD makes O(da1) probes to Ba and does O(da21) arithmetic
operations in Zp to interpolate a1 in Zp[x1]. Similarly, step 4 makes O(db1) probes to Bb and does
O(db21) arithmetic operations in Zp to interpolate b1 in Zp[x1]. In step 6, the Euclidean algorithm
does O(da1db1) arithmetic operations in Zp to compute g1 and step 8 needs O(da1db1) arithmetic
operations in Zp to compute the square-free factorization of g1 (see [8]). These costs are dominated
by the cost of Algorithm CM_BB_SHL_GCD in step 10 which does O(sT (d1D(d1+D+Ca+Cb)+
(n+D)#F + nD)) arithmetic operations in Zp by Theorem 1. The theorem follows since d1 ≤ D.

5 Benchmarks

We present three timing benchmarks with each benchmark executed in Maple 2024. All timings
were obtained using one core on a server with 128 gigabytes of RAM and two Intel Xeon E5-2680
processors running at 2.80GHz base and 3.60GHz turbo.

Let a, b ∈ Z[x1, ..., xn], g = gcd(a, b), c = a/g and d = b/g. For comparison, we’ve created two
additional algorithms which compute monic(g). For the first algorithm, we create a new modular
black box for computing f = a/b and use the sparse rational function interpolation algorithm
proposed by Kaltofen and Yang [14], which outputs black boxes, for computing c(σ) and d(σ) for
a given point σ ∈ Zn

p . From this we can compute g(σ) = a(σ)/c(σ). We combined this method
with Ben-Or/Tiwari sparse interpolation [1] to interpolate g mod p. We then used our BB_MGCD
algorithm to find monic(g) using Chinese remaindering and rational number reconstruction.

For the second algorithm, we modify the black box GCD algorithm proposed by Kaltofen and
Diaz in [7] to make it into a modular algorithm. Kaltofen and Diaz’s algorithm creates a black
box Bg such that Bg(σ) computes g(σ). Instead, we create a modular black box for computing
g(σ) mod p and combine the modular black box with Ben-Or/Tiwari sparse interpolation and
our BB_MGCD algorithm to compute monic(g), again using Chinese remaindering and rational
number reconstruction. We shall refer to these new algorithms as the “Kaltofen–Yang” algorithm and
“Kaltofen–Diaz” algorithm respectively. For both the Kaltofen–Yang and Kaltofen–Diaz algorithms,
we randomize the input as follows. We pick β ∈ Zn

p and construct a new black box Bc : (Zn, p)→ Zp

where Bc(α, p) = Ba([β1α1, β2α2, ..., βnαn], p) to avoid evaluating a at an unlucky point w.h.p.

5.1 Benchmark 1

Our first benchmark is taken from Kaltofen-Diaz [7]. Let

V1 =


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

 .

A New Black Box GCD Algorithm Using Hensel Lifting 13

V1 is an n×n Vandermonde matrix in the variables [x1, x2, ..., xn]. Let V2 be an n×n Vandermonde
matrix in [x1, ..., xn/2, yn/2+1, ..., yn]. We create two modular black boxes Ba, Bb : (Zn, p) → Zp

such that Ba and Bb return the determinants of V1 and V2 respectively evaluated at a point modulo
a prime p. We compute the GCD of Ba and Bb, namely

gcd(det(V1),det(V2)) =

n/2−1∏
i=1

n/2∏
j=i+1

(xi − xj). (5)

Table 1 shows the CPU timings (in seconds) for our new algorithm compared against the
Kaltofen-Yang (KY) and Kaltofen-Diaz (KD) algorithms to compute (5). All algorithms use the
two primes p = 261+15 and p = 261+21 to compute the GCD. Column #g is the number of terms
in g, column #pp(g, x1) is the number of terms in pp(g, x1), column sn is the largest sj used by
Algorithm 4, sT =

∑n
j=2 sj used in Algorithm 4, and column #probes is the number of times each

algorithm had to probe a black box. Column “eval BB” is the time (in seconds) used by Algorithm 4
to probe the black boxes prior to univariate interpolation (steps 12 and 14). For our BB_MGCD al-
gorithm, the timings given in brackets are the time needed to compute pp(gcd(det(V1),det(V2)), x1)
only. This illustrates the advantage of not computing cont(g, x1).

BB_MGCD KY KD
n #g #pp(g, x1) sn sT time (pp only) eval BB #probes time #probes time #probes
4 2 2 1 6 (6) 0.061 (0.061) 0.00 (0.00) 766 (766) 0.039 408 0.042 264
6 6 4 2 20 (29) 0.205 (0.126) 0.04 (0.01) 3646 (2446) 0.076 1750 0.100 1090
8 24 8 3 41 (79) 0.600 (0.251) 0.18 (0.04) 10742 (5594) 0.289 10860 0.592 6828
10 120 16 6 102 (183) 1.522 (0.530) 0.60 (0.10) 27842 (13702) 2.122 72590 4.503 46142
12 720 32 10 203 (438) 3.506 (0.952) 1.67 (0.17) 63918 (28882) 23.438 729936 56.967 468120
14 5040 64 20 468 (969) 7.815 (2.024) 4.18 (0.50) 146654 (68726) FAIL - FAIL -
16 40320 128 35 929 (2027) 18.171 (4.244) 10.61 (1.02) 320790 (146026) FAIL - FAIL -
18 362880 256 70 2070 (4329) 45.889 (9.981) 29.15 (2.64) 722354 (346822) FAIL - FAIL -
20 3628800 512 126 4114 (8883) 118.941 (23.392) 82.14 (5.92) 1577282 (743606) FAIL - FAIL -

Table 1. Benchmark 1: Timings in CPU seconds

Our algorithm is faster than both the Kaltofen-Yang and Kaltofen-Diaz algorithms when n ≥ 10.
Ben-Or/Tiwari sparse interpolation is relatively fast when interpolating polynomials with a small
number of terms, but slows down when interpolating polynomials with many terms. This partially
explains why both the Kaltofen-Yang and Kaltofen-Diaz algorithm outperform our BB_MGCD
algorithm when n is small. In Table 1, FAIL means the Ben-Or/Tiwari sparse interpolation needed
a prime greater than 263 which we have not implemented and it would be slow. When comput-
ing cont(g, x1), our algorithm spends the largest amount of time on probing the black boxes for
interpolations for n ≥ 12.

5.2 Benchmark 2

Consider the polynomials a = f1f
2
2 ā and b = f1f

2
2 b̄ in Z[x1, ..., x8] with g = gcd(a, b) = f1f

2
2 . We

generate the polynomial f1 with t1 terms where each monomial is chosen randomly from the set
of monomials with the indeterminates x1, ..., x8 that have a total degree of at most 5 and each

14 Michael Monagan and Garrett Paluck

integer coefficient is chosen randomly from [-99,99]. We define f2, ā, and b̄ similarly to f1 except
that they have t2, t3, and t4 terms respectively. For all benchmarks, we set t3 = t4 = 10. We create
the modular black boxes Ba and Bb which evaluate the polynomials a and b at a point modulo a
prime p. We note that g is not square-free which is a best case for our algorithm.

Table 2 uses the same algorithms and terms as Table 1.

BB_MGCD KY KD
#g t1 t2 sn sT time eval BB #probes time #probes time #probes
495 10 10 5 44 1.510 0.42 15825 2.110 42194 6.001 76913

4071 20 20 12 59 2.209 0.85 26041 17.374 279537 57.858 597986
27409 40 40 26 97 4.739 1.58 53277 75.142 675546 1008.83 4564903

118031 80 80 49 156 6.672 2.35 72623 133.199 719958 13014.39 19056681
Table 2. Benchmark 2: Timings in CPU seconds

Our BB_MGCD algorithm outperforms the Kaltofen–Yang and Kaltofen–Diaz algorithms in all
cases. As our algorithm only has to lift to sqf(g) when calling the CM_BB_SHL_GCD algorithm, it
does significantly fewer probes to Ba and Bb than the Kaltofen-Yang and Kaltofen-Diaz algorithms.
As stated before, Benchmark 2 is a best case for our algorithm.

5.3 Benchmark 3

Our third benchmark is taken from Monagan and Huang [12]. We want to calculate the GCD of
two polynomials with n = 8 variables. We create the polynomial g with s terms and polynomials
c and d with t terms where each monomial is chosen randomly from the set of monomials with a
total degree of at most 12 and each integer coefficient is chosen randomly from [−99, 99]. We create
the modular black boxes Ba and Bb which evaluate the polynomials a = gc and b = gd at a point
modulo a prime p. Since g, c, d are created randomly, we have g = gcd(a, b) where g is square-free
and has no polynomial content which is a worst case for our algorithm.

Table 3 uses the same algorithms and terms as Table 1.

BB_MGCD KY KD
s t sn sT time #probes time #probes time #probes

10 10000 5 28 11.388 20445 1.905 3337 1.911 3169
100 5000 42 187 39.132 131231 7.359 24757 7.679 23400

1000 2500 407 1303 270.577 1193566 46.589 215176 50.064 203032
2500 1000 943 2589 626.824 2474626 152.015 699817 166.754 660239
5000 100 1925 4398 1756.228 4222639 428.820 1398957 454.156 1319793

10000 10 3619 7320 5422.783 5606030 1589.731 2797277 1635.116 2638956
Table 3. Benchmark 3: Timings in CPU seconds

We see a different result from this benchmark. The Kaltofen–Yang and Kaltofen–Diaz algo-
rithms both outperform our BB_MGCD algorithm in all cases. Part of the reason for this is that

A New Black Box GCD Algorithm Using Hensel Lifting 15

the Kaltofen–Yang and Kaltofen–Diaz algorithms use Ben-Or/Tiwari sparse interpolation which
recovers all variables in g simultaneously. However, notice that our algorithm is gaining as s = #g
increases.

In Theorem 1, the number of probes is multiplied by a factor of sT ≤ (n − 1)sn. The factor of
n − 1 is because our algorithm recovers the variables x2, . . . , xn in g one at a time using Hensel
lifting. In comparison, the other algorithms use BenOr/Tiwari interpolation, which recovers all
variables in g simultaneously. But sn can be significantly smaller than #g which represents a gain
of a factor of #g/sn for our algorithm.

If g =
∑d1

i=0 ai(x2, . . . , xn)x
i
1, for this benchmark, when we recover xn using Hensel lifting,

sn = maxd1
i=0 #ai(x2, . . . , xn−1, αn) ≤ maxd1

i=0 #ai, that is, sn is at most the number of terms of
the largest coefficient of g in x1. The terms in g are unlikely to be equally distributed among
the ai coefficients. The largest value for sn (the worst case for our algorithm) occurs when g =
xd1
1 +a0(x2, . . . , xn), that is, only one term involves x1. The lowest value for sn (the best case for our

algorithm) occurs when the terms of g are distributed equally among the coefficients a0, a1, . . . , ad1
.

Thus #g/(d1 + 1) ≤ sn < #g hence 1 < #g/sn ≤ d1 + 1.
In benchmark 3, we choose the terms of g at random from those of degree at most d. Since a

polynomial f in n variables with deg(f) = d has at most
(
n+d
d

)
terms, the expected value

E

[
#g

sn

]
=

(
n+d
d

)(
n−1+d

d

) =
(n+ d)

n
.

For benchmark 3 where n = 8 and d = 12, E[#g/sn] = 2.5 which is low. It’s a lot less than the
best case d+ 1 = 13.

6 Implementation Notes

We have implemented our new black box GCD algorithm in Maple with some subroutines coded in
C. Our code is available for download at http://www.cecm.sfu.ca/~mmonagan/code/BBMGCD/

For Algorithm 4 CM_BB_SHL_GCD_stepj we have implemented the univariate interpolations
in steps 12 and 14 in C. In Algorithm 4 we use Maple’s GCD algorithm to compute gcd(a1, b1) in
Zp[x1] which is coded in C. The bivariate Hensel lift in step 35 of Algorithm 4 is coded in C. We use
our algorithm from [17]. For step 42 in Algorithm 4, we solve a Vandermonde system of dimension
sρ,i. We coded Zippel’s algorithm [24] in C. It does O(s2ρ,i) arithmetic operations in Zp. We note
that the main for loop in line 9 of Algorithm 4 CM_BB_SHL_GCD_stepj can be parallelized.

We have performed several optimizations to our black box implementations in Benchmark 1 in
order to speed up the black box probes. Our black boxes compute det(V1) and det(V2) evaluated
at a point α ∈ Z2n

p using the formula det(V1) =
∏n−1

i=1

∏n
j=i+1(xi − xj) and similarly for det(V2).

For Benchmark 2, we do not expand the polynomials A = CG and B = DG in our black boxes.
Instead, we evaluate C,D and G independently, then return the products.

Two places where we need to evaluate polynomials in Zp[x1, ..., xn] are the partial factors in
step 32 of Algorithm 4 and the polynomial f̂ in steps 16 and 17 of Algorithm 2. We perform these
multivariate polynomial evaluations modulo a 62 bit prime p using a C program for efficiency. Since
Maple has two representations for polynomials in Z[x1, ..., xn], namely, the old SUM-OF-PROD
representation and the new POLY representation (see [18]), we must handle both representations.
Even with these evaluations coded in C, often more than 50% of the time is spent in these evalua-
tions on our benchmarks. Table 4 gives a timing breakdown for the main steps of Algorithm 4 for

16 Michael Monagan and Garrett Paluck

benchmark 1 for n = 20. It shows that 82.14/118.94 = 69% of the total time was spent in black
box probes.

Operation time(s)
Compute monomial evaluations (step 4) 1.01
Probe Ba and Bb for interpolation (steps 12,14) 82.14
Perform univariate interpolations (steps 12,14) 14.39
Compute univariate GCD (step 16) 3.46
Compute 2nd univariate GCD (step 18) 2.60
Rational Function Reconstruction (step 26) 0.40
Evaluate f̂ρ,j−1(x1, Yk) (step 32) 1.69
Perform BivariateHenselLift (step 35) 0.43
Solve Vandermonde systems (step 42) 6.42
Other operations 6.40
Total 118.94

Table 4. Algorithm 3 breakdown for Benchmark 1 for n = 20

7 Conclusion

In this paper, we have contributed a new algorithm for computing the multivariate GCD of sparse
polynomials represented by black boxes. Our algorithm constructs a factorization of the GCD g from
a sequence of bivariate images of g. We also constructed a black box GCD algorithm from Kaltofen-
Yang’s sparse rational function interpolation algorithm. Our algorithm was much faster than the
Kaltofen-Yang and Kaltofen-Diaz black box GCD algorithms on two of the three benchmarks but
slower on the other benchmark. We gave a complexity analysis for our new algorithm but have yet
to complete a failure probability analysis.

We designed our algorithm to interpolate the square-free factors of g = gcd(a, b) which gives
it an advantage when the square-free factors are smaller than g. We could design it to instead
recover the irreducible factors of g over Z by lifting a factorization of g(x1, α) over Z. This would
be faster for benchmark 1 where the factors all have 2 terms. We chose not to do this because of
the additional cost of a factorization in Z[x] and because it makes the algorithm more complicated.
Computing a square-free factorization is easy and does not increase the cost.

Acknowledgments. This work was supported by the National Science and Research Council of Canada
(NSERC) and Maplesoft.

Disclosure of Interests. Michael Monagan has received a research grant from Maplesoft.

References

1. Ben-Or, M., and Tiwari, P. A Deterministic Algorithm for Sparse Multivariate Polynomial Inter-
polation. In Proceedings of STOC ’88 (1988), ACM, pp. 301–309.

2. Brown, W., and Traub, J. On Euclid’s Algorithm and the Theory of Subresultants. J. ACM 18
(1971), 505–514.

A New Black Box GCD Algorithm Using Hensel Lifting 17

3. Brown, W. S. On Euclid’s Algorithm and the Computation of Polynomial Greatest Common Divisors.
J. ACM 18, 4 (1971), 478–504.

4. Chen, T. Sparse Hensel Lifting Algorithms for Multivariate Polynomial Factorization. PhD thesis,
Simon Fraser University, 2024.

5. Chen, T., and Monagan, M. A New Black Box Factorization Algorithm - the Non-Monic Case. In
Proceedings of ISSAC ’23 (2023), ACM, p. 173–181.

6. Cuyt, A., and Lee, W.-s. Sparse interpolation of multivariate rational functions. Theoretical Com-
puter Science 412, 16 (2011), 1445–1456.

7. Díaz, A., and Kaltofen, E. On Computing Greatest Common Divisors with Polynomials given by
Black Boxes for Their Evaluations. In Proceedings of ISSAC ’95 (1995), ACM, p. 232–239.

8. Gathen, J. v. z., and Jürgen, G. Modern Computer Algebra, 3 ed. Cambridge University Press,
2013.

9. Geddes, K. O., Czapor, S. R., and Labahn, G. Algorithms for Computer Algebra. Kluwer
Academic, 1992.

10. Giorgi, P., Grenet, B., Perret du Cray, A., and Roche, D. Sparse polynomial interpolation
and division in soft-linear time. In Proceedings of ISSAC ’22 (2022), ACM, pp. 459–468.

11. Hu, J., and Monagan, M. A fast parallel sparse polynomial gcd algorithm. In Proceedings of ISSAC
’16 (2016), ACM, pp. 271–278.

12. Huang, Q.-L., and Monagan, M. A New Sparse Polynomial GCD Algorithm by Separating Terms.
In Proceedings of ISSAC ’24 (2024), ACM, pp. 134–142.

13. Kaltofen, E., and Trager, B. M. Computing with Polynomials Given by Black Boxes for Their
Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators.
J. Symb. Comput. 9, 3 (1990), 301–320.

14. Kaltofen, E., and Yang, Z. On Exact and Approximate Interpolation of Sparse Rational Functions.
In Proceedings of ISSAC ’07 (2007), ACM, p. 203–210.

15. Monagan, M. Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational
Reconstruction. In Proceedings of ISSAC ’04 (2004), ACM, p. 243–249.

16. Monagan, M. Linear Hensel Lifting for Zp[x, y] and Z[x] with Cubic Cost. In Proceedings of ISSAC
’19 (2019), ACM, pp. 299–306.

17. Monagan, M., and Paluck, G. Linear Hensel Lifting for Zp[x, y] for n Factors with Cubic Cost. In
Proceedings of ISSAC ’22 (2022), ACM, p. 159–166.

18. Monagan, M., and Pearce, R. The design of Maple’s sum-of-products and POLY data structures
for representing mathematical objects. Commun. Comput. Algebra 48, 3/4 (2014), 160–186.

19. van der Hoeven, J., and Lecerf, G. On sparse interpolation of rational functions and gcds.
Commun. Comput. Algebra 55, 1 (2021), 1–12.

20. van der Hoeven, J., and Lecerf, G. Fast interpolation of multivariate polynomials with sparse
exponents. J. Complex. 87, C (2025).

21. Wang, P. S. The EEZ-GCD Algorithm. SIGSAM Bull. 14, 2 (1980), 50–60.
22. Wang, P. S., Guy, M. J. T., and Davenport, J. H. P-adic Reconstruction of Rational Numbers.

SIGSAM Bull. 16, 2 (1982), 2–3.
23. Zippel, R. Probabilistic Algorithms for Sparse Polynomials. In Proceedings of ISSAC ’79 (1979),

Springer-Verlag, p. 216–226.
24. Zippel, R. Interpolating Polynomials from their Values. J. Symb. Comput. 9, 3 (1990), 375–403.

	A New Black Box GCD Algorithm Using Hensel Lifting

