
A Failure Probability Analysis of a Modular
Algorithm to Compute the Monic GCD of
Multivariate Polynomials over Algebraic

Number Fields Q(α1, . . . , αn)

Mahsa Ansari and Michael Monagan

Department of Mathematics, Simon Fraser University
Burnaby, British Columbia, V5A 1S6, Canada

mansari@sfu.ca and mmonagan@sfu.ca

Abstract. Let Q(α1, . . . , αn) be an algebraic number field. In 2023,
Ansari and Monagan designed a modular algorithm to compute the
monic gcd g of two polynomials f1 and f2 in Q(α1, . . . , αn)[x1, . . . , xk].
The algorithm computes g modulo primes and uses interpolation to re-
cover x2, x3, . . . , xk in g. However, the algorithm may fail in certain cases,
for instance, when encountering a zero divisor. In this paper, we present
a refined classification of failure cases for this algorithm and provide a
detailed analysis of their probabilities.

Keywords: Modular Algorithms. Failure Probability. Algebraic Number Fields.

1 Introduction

In 1967, Collins [6] introduced a modular algorithm for computing univariate
gcds in Z[x] using homomorphic reductions and Chinese remaindering. In 1971
Brown [4] extended this approach to multivariate polynomials. Langemyr and
McCallum [11] subsequently adapted these algorithms to work over algebraic
number fields Q(α). Later, Encarnacion [9] used rational number reconstruction
to recover the rational coefficients in the target gcd and make the algorithm
for Q(α) output sensitive. In 2002, Monagan and Van Hoeij [14] generalized
Encarnacion’s method to treat polynomials in Q(α1, . . . , αn)[x] but they did not
analyze the failure probability of their algorithm. Building on this foundation,
in 2023, Ansari and Monagan [2] proposed a modular algorithm for computing
the monic gcd of polynomials in Q(α1, . . . , αn)[x1, . . . , xk] but they too did not
do a failure probability analysis. Their algorithm, called MGCD (see Algorithm
5 in Appendix A), simplifies the computation over Q(α1, . . . , αn) by converting
the input polynomials to their corresponding polynomials over Q(γ) where γ is a
primitive element of Q(α1, . . . , αn). To avoid coefficient growth, MGCD performs
computations modulo primes. It also reduces the multivariate gcd problem to
many univariate gcds through evaluation, and then interpolates x2, x3, . . . , xn

2 Mahsa Ansari and Michael Monagan

in the result using dense interpolation. The univariate gcds are computed using
the monic Euclidean algorithm [14], which can fail if it encounters a zero divisor.
To recover the rational coefficients of the monic gcd, MGCD employs Chinese
remaindering and rational number reconstruction. In this paper, we categorize
primes and evaluation points that can lead to failure and derive bounds on their
likelihood.

2 Preliminaries

Let L0 = Q. For each i = 1, 2, . . . , n, define Li = Li−1[zi]/⟨Mi(zi)⟩ where
Mi(zi) is the monic minimal polynomial of αi over Li−1. The field L = Ln is
a Q-vector space of dimension d =

∏n
i=1 di where di = deg(Mi, zi) with ba-

sis BL = {
∏n

i=1(zi)
ei | 0 ≤ ei < di}. Since L ∼= Q(α1, . . . , αn), computations in

Q(α1, . . . , αn) can be done by replacing each αi with the corresponding vari-
able zi, and then performing the computation within L. In algorithm MGCD
(see Algorithm 5 in Appendix A), we assume that the minimal polynomials
M1(z1), . . . ,Mn(zn) are provided, which allows us to construct L. We denote
the coordinate vector of a ∈ L w.r.t. the basis BL by [a]BL

.
In this paper, R refers to a commutative ring with identity 1 ̸= 0. Fix a

monomial ordering in R[x1, . . . , xk]. For f ∈ R[x1, . . . , xk] denote its leading
coefficient and leading monomial by lc(f) and lm(f), respectively. If f = 0, define
monic(f) = 0. If f ̸= 0 and lc(f) is a unit in R, then monic(f) = lc(f)−1f .
Otherwise, monic(f) = failed. Let f1, f2 ∈ R[x1, . . . , xk], and suppose a monic
g = gcd(f1, f2) exists. Then g is unique [14], and there exist polynomials h1 and
h2 such that f1 = h1 · g and f2 = h2 · g; these are called cofactors of f1 and f2,
respectively.

Example 1. Let L = Q[z1, z2]/⟨z21 − 2, z22 − 3⟩ with basis BL = {1, z2, z1, z1z2}.
Let f1 = (z2x + z1y)(z1x + y) and f2 = (z2x + z1y)(x − z2y) ∈ L[x, y]. By
inspection, gcd(f1, f2) = z2x+ z1y. Fixing lexicographical order with x > y, the
monic gcd is g = x+ 1

3z1z2y.

Definition 1. Given f1, f2 ∈ R[x] with 0 ≤ deg(f2) ≤ deg(f1), assume that
Algorithm 1: Monic Euclidean Algorithm (MEA) does not fail for f1 and f2 and
terminates after l+1 iterations. We define the Monic Polynomial Remainder Se-
quence, m.p.r.s., generated by polynomials f1 and f2 as the sequence r1, r2, . . . , rl
obtained from the execution of the Monic Euclidean Algorithm such that r1 = f1,
r2 = f2, r3 = r1 −M2q3, and ri+2 = Mi −Mi+1qi+1 with Mi = monic(ri) and
deg(ri+1) < deg(ri) for 2 ≤ i ≤ l − 1 and rl+1 = 0.

Let LZ = Z[z1, . . . , zn]. For any f ∈ L[x], the denominator of f , denoted
by den(f), is the smallest positive integer such that den(f)f ∈ LZ[x]. In ad-
dition, the associate of f is defined as f̃ = den(h)h where h = monic(f).
The semi-associate of f , denoted by f̌ , is defined as rf , where r is the small-
est positive rational number for which den(rf) = 1. For instance, let L be as
in Example 1 and f = 3

2z1x + z2 ∈ L[x]. Then den(f) = 2, f̌ = 3z1x + 2z2,

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 3

Algorithm 1: Monic Euclidean Algorithm (MEA)

Input: f1, f2 ∈ R[x] such that 0 ≤ deg(f2) ≤ deg(f1) and R is a commutative
ring with identity 1 ̸= 0.

Output: Either the monic gcd(f1, f2) or FAIL.
1 r1, r2 = f1, f2
2 M1, i = r1, 2
3 while ri ̸= 0 do
4 Mi = monic(ri)
5 if Mi = failed then return(FAIL) // The algorithm encountered a

zero-divisor.

6 Set ri+1 to be the remainder of Mi−1 divided by Mi

7 Set i = i+ 1

8 l = i− 1
9 return(Ml)

monic(f) = x+ 1
3z1z2 and f̃ = 3x+ z1z2. To improve computational efficiency,

in a preprocessing step, MGCD clears fractions by replacing the input polyno-
mials f1 and f2 with their semi-associates. MGCD speeds up the computation
by mapping Q(α1, . . . , αn) to Q(γ) where γ is a primitive element. This is done
using the LAminpoly algorithm, Algorithm 2, over F = Zp where p is a prime.
The computation is done mod p to prevent expression swell. However, not all the
primes result in the successful reconstruction of the monic gcd. In the following
example, we explain how the LAminpoly algorithm works and how polynomials
over Q(α1, . . . , αn) are converted to Q(γ).

Algorithm 2: LAminpoly

Input: [m1(z1), . . . ,mn(zn)], field F = Zp, γ = z1 +
∑n

i=2 Ci−1zi with
Ci ∈ Z \ {0}

Output: FAIL or M(z) ∈ F[z] s.t. M(γ) = 0, matrix A, and A−1

1 Let di = deg(mi(zi)), BLp = {
∏

zeii | 0 ≤ ei < di}, d =
∏

di
2 Initialize A as d× d zero matrix over F
3 g0 = 1
4 for i = 1 to d do
5 Set column i of A to [gi−1]BLp

6 gi = γ · gi−1

7 if det(A) = 0 then
8 return (FAIL)

9 Compute A−1 and set q = A−1 · (−[gd]BLp
)

10 M(z) = zd + qdz
d−1 + · · ·+ q1

11 return (M(z), A, A−1)

4 Mahsa Ansari and Michael Monagan

Example 2. Given L as defined in Example 1, choose p = 5 so the ground
field in LAminpoly algorithm is F = Z5. After reducing the minimal polyno-
mials modulo p, we have L5 = Z5[z1, z2]/⟨z21 + 3, z22 + 2⟩ with basis BLp =
{1, z2, z1, z1z2}. Let γ = z1 + z2. Algorithm 2 checks whether γ is a primitive
element of L or not. If γ is a primitive element, then Algorithm 2 computes the
characteristic polynomial of γ, M(z), so we can construct L̄5 = Z5[z]/⟨M(z)⟩
such that L̄5

∼= L5. LAminpoly algorithm first constructs the 4 × 4 matrix
A = [[1, 0, 0, 0], [0, 1, 0, 4], [0, 1, 0, 1], [0, 0, 2, 0]] whose i’th column is [γi]BLp

for
0 ≤ i ≤ 3. Since det(A) = 9 mod 5 ̸= 0, we consider γ = z1 + z2 as a prim-
itive element of Z5(

√
2,
√
3). If we had chosen p = 3, then det(A) mod p = 0

and A would not be invertible. We call 3 det-bad prime and define it in sec-
tion 3. Computing q = A−1 · (−[γ4]BL

), we construct the characteristic polyno-
mial M(z) = zd + qdz

d−1 + . . . + q2z + q1. Thus, we have M(z) = z4 + 1 and
L̄5 = Z5[z]/⟨z4 + 1⟩.

Notations 1. We use the following notation in this paper.

– Let p be a prime such that p ∤
∏n

i=1 lc(M̌i). Let mi(zi) = Mi mod p for
1 ≤ i ≤ n. Define Lp = Zp[z1, . . . , zn]/⟨m1, . . . ,mn⟩.

– L̄p = Zp[z]/⟨M(z)⟩ where M(z) is obtained from Algorithm 2 over Zp.
– L̄Z = Z[z]/⟨M(z)⟩ where M(z) is obtained from Algorithm 2 over Q.

Let BLp
= {

∏n
i=1(zi)

ei s.t 0 ≤ ei < di} and BL̄p
= {1, z, z2, . . . , zd−1}

be bases for Lp and L̄p, respectively. Let C : Lp −→ Zd
p and D : L̄p −→ Zd

p

be bijections such that C(a) = [a]BLp
and D(b) = [b]BL̄p

. Define ϕγ : Lp −→
L̄p such that ϕγ(a) = D−1(A−1 · C(a)), where A is the matrix obtained from
the LAminpoly algorithm over F = Zp. Moreover, ϕ−1

γ : L̄p −→ Lp such that
ϕ−1
γ (b) = C−1(A ·D(b)).

Example 3. Let f1 ∈ L be the polynomials in Example 1 and let L5
∼= L̄5 where

L̄5 = Z5[z]/⟨z4 + 1⟩ obtained from Example 2. Let BLp
= {1, z2, z1, z1z2} and

A be the matrix computed in Example 2. We have, [f1]BLp
= [2xy, xy, y2, x2]T

and b = A−1 · [f1]BLp
= [2xy, 2xy+3y2, 2x2, 3xy+3y2] as the coordinate vector

of ϕγ(f) relative to BL̄p
= {1, z, z2, z3}. Therefore,

ϕγ(f) = 2x2z2 + (3z3 + 2z + 2)yx+ (3z3 + 3z)y2 ∈ L̄p[x, y].

Note that L̄p is a finite ring with pd elements which likely has zero divisors.
After computing ϕγ(f1), ϕγ(f2) ∈ L̄p[x1, . . . , xk], the MGCD algorithm invokes
PGCD (see Algorithm 6 in Appendix A) to compute the monic gcd over L̄p.
PGCD is recursive. For k = 1 it applies the monic Euclidean Algorithm (MEA)
[14]. For k > 1, PGCD uses a sequence of evaluation points to reduce the multi-
variate problem to the univariate case. It then uses MEA to compute the gcd. If
MEA fails (e.g., due to encountering a zero-divisor), a new prime and evaluation
point are chosen. PGCD reconstructs the gcd over L̄p via dense interpolation.
Once PGCD returns the monic gcd over L̄p, MGCD applies ϕ−1

γ to undo ϕγ and

map the gcd from L̄p to its corresponding polynomials in Lp. To reconstruct

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 5

the rational coefficients in g, MGCD applies Chinese remaindering and rational
number reconstruction [12,13]. We give an example of MGCD to illustrate the
treatment of zero-divisors in Lp and to motivate the use of a primitive element.

Example 4. Continuing Example 1, let MGCD pick p = 5 and define L5 =
Z5[z1, z2]/⟨ z21 +3, z22 +2 ⟩. From Example 2, we have L̄p = Z5[z]/⟨z4 +1⟩. After
converting f1 and f2 to ϕγ(f1) and ϕγ(f2) ∈ L̄p[x, y] as in Example 3, Algorithm
PGCD chooses a random evaluation point, y = 2, and tries to compute g1 =
gcd((ϕγ(f1)(y = 2), ϕγ(f2)(y = 2)) where

ϕγ(f1)(y = 2) = 2z2x2 + (z3 + 4z + 4)x+ 2z3 + 2z

ϕγ(f2)(y = 2) = (3z3 + 2z)x2 + (z3 + z + 4)x+ 2z2.

However, MEA fails after the second iteration since lc(r3) = 4z3 + 2z is not
inverible over L̄p. We call (p, β) = (5, 2) a zero-divisor pair.

Next, MGCD retries with p = 7 so L̄7 = Z7[z]/⟨z4 + 4z2 + 1⟩. At y = 1,
PGCD computes g1 = gcd(ϕγ(f1)(y = 1), ϕγ(f2)(y = 1)) = 6z2 + x + 5. Notice
that lm(g1) = x. A second evaluation at y = 0 yields g2 = gcd(ϕγ(f1)(y =
0), ϕγ(f2)(y = 0)) = x2 which is discarded as lm(g2) = x2 > lm(g1), making
y = 0 an unlucky evaluation point. Further evaluations at y = 3 and y = 4
allows interpolation of the monic gcd at y so gp = gcd(ϕγ(f1), ϕγ(f2)) = x +
(6z2+5)y ∈ L̄7[x, y]. Applying ϕ−1

γ maps gp back to Lp[x, y]. That is, ϕ
−1
γ (gp) =

x+(6z2+5)y ∈ L7[x, y]. MGCD then attempts to reconstruct rational coefficients
of g using Chinese remaindering and rational number reconstruction, but one
modular image is insufficient. After doing the above process for additional primes
p = 11 , p = 13 and p = 17, reconstruction succeeds, yielding the correct monic
gcd gcd(f1, f2) = x+ 1

3yz2z1 ∈ L[x, y].

Definition 2. The resultant of f1 and f2 w.r.t. the variable xi is defined as
res(f1, f2, xi) = det(sylv(f1, f2, xi)) ∈ R[x1, . . . , xi−1, xi+1 . . . , xk] where sylv(f1, f2, xi)
is the Sylvester matrix of f1 and f2 w.r.t. the variable xi.

Theorem 1. (See Corollary (Sylvester’s Criterion), chapter 7 of [10].) Let
f1, f2 ∈ R[x] and suppose g = gcd(f1, f2) exists. Then deg(g, x) > 0 if and only
if res(f1, f2) = 0.

Algorithm 3 URES from [3] computes res(f1, f2) where f1, f2 ∈ R[x]. We
note that Algorithm MEA fails if and only if Algorithm URES fails.

3 Failure Probability

In [2], we categorized the evaluation points that lead to failures in our PGCD
algorithm into three types: lc-bad, zero-divisor, and unlucky evaluation points.
Similarly, for the MGCD algorithm, we identified four types of primes that may
cause failures: det-bad, lc-bad, zero-divisor, and unlucky primes. In this section,
we refine these classifications and present a probabilistic analysis of their impact
on the success of the MGCD algorithm.

6 Mahsa Ansari and Michael Monagan

Algorithm 3: URES

Input: f1, f2 ∈ R[x] such that 0 ≤ deg(f2) ≤ deg(f1) where R is a
commutative ring with identity 1 ̸= 0.

Output: Either res(f1, f2) or FAIL.
1 r1 = f1, r2 = f2, i = 2
2 M1 = r1, R = 1, v = 0
3 n1 = deg(f1) ,n2 = deg(f2)
4 while ri ̸= 0 do
5 Mi = monic(ri)
6 if Mi = failed return (FAIL)// The algorithm encounters a

zero-divisor.

7 Set ri+1 to be the remainder of Mi−1 divided by Mi

8 Set ni+1 = deg(ri+1)
9 if ni+1 < 0 and ni ̸= 0 then return(0)// If gcd(f1, f2) is a constant,

then res(f1, f2) = 0
10 Set R = R · lc(ri)ni−1

11 Set v = v + nini−1

12 Set i = i+ 1

13 R = (−1)vR
14 return(R)

Notations 2. We use the following notations in this section.

– #f denotes the number of terms of f ∈ R[x1, . . . , xk].
– di = deg(Mi, zi) and d =

∏n
i=1 di.

– Pb = {all b-bit primes}, that is, primes in (2b−1, 2b). In our current code, we
use 31-bit primes and | P31 |= 50, 697, 537.

Definition 3. Let f ∈ LZ[x1, . . . , xk, y]. We denote the height of f by ∥f∥∞
and define it as the absolute value of the largest integer coefficient of f in mag-
nitude.

Let f1, f2 ∈ R[x] be two non-zero polynomials such that lc(f2) and lc(f1) are
units, and 0 ≤ deg(f2) ≤ deg(f1). Then

– Let rem (f1, f2) and quo(f1, f2) denote the remainder and quotient of f1
divided by f2, where rem (f1, f2) = 0 or deg(rem (f1, f2)) < deg(f2), i.e.,
rem (f1, f2) = f1 − f2 quo(f1, f2).

– Let mrem(f1, f2) and mquo(f1, f2) be the remainder and quotient of monic(f1)
divided by monic(f2) i.e., mrem(f1, f2) = monic(f1)−monic(f2) mquo(f1, f2).

– Let prem (f1, f2) and pquo(f1, f2) be the pseudo-remainder and pseudo-
quotient of f1 divided by f2.

3.1 Lc-bad pairs

Definition 4. Let f1, f2 ∈ LZ[x1, . . . , xk] be non-zero polynomials with deg(f2) ≤
deg(f1). Let p be a prime and β ∈ [0, p)k−1 be an evaluation point. We call the
ordered pair (p, β) lc-bad if p |

∏n
i=1 lc(M̌i, zi), or p | lc(f2, x1)(β).

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 7

Example 5. Let f1 = (y + z)x3 + xz and f2 = (y + 1)x + zx be polynomials in
LZ[x, y]. The ordered pair (p, β) = (7, 6) is lc-bad since 7 | lc(f2, x)(6) = 7.

Theorem 2. Let f1, f2 ∈ LZ[x1, . . . , xk] with 0 ≤ deg(f2) ≤ deg(f1), and
∥lc(f2, x1)∥∞ ≤ 2h, T = #lc(f2, x1). Let lc(M̌i, zi) ≤ 2m for 1 ≤ i ≤ n, and
let Dl = maxki=1(deg(lc(f2, x1), xi)). If p is chosen at random from Pb and β is
chosen at random from [0, p)k−1, then

Prob[(p, β) is lc-bad] ≤ ⌊h+Dl(k − 1)b+ log2 T ⌋+ nm

b | Pb |
.

Proof. By definition,

Prob[(p, β) is lc-bad] = Prob[p | lc(f2, x1)(β) ∨ p | lc(M̌i, zi) for some 1 ≤ i ≤ n]

≤ Prob[p | lc(f2, x1)(β)] +

n∑
i=1

Prob[p | lc(M̌i, zi)].

Write lc(f2, x1) =
∑t

i=1 aαi
(X)Zαi ∈ Z[x2, . . . , xk][z1, . . . , zn] whit αi = (αi1 , . . . , αin) ∈

Zn
≥0 and Zαi = z

αi1
1 · · · zαin

n and aαi(X) ∈ Z[x2, . . . , xk]. Then,

Prob[p | lc(f2, x1)(β)] = Prob[p | aα1(β) ∧ . . . ∧ p | aαt(β)] ≤ Prob[p | aα1(β)].

LetDi = deg(aα1 , xi+1) for 1 ≤ i ≤ k−1 so | aα1(β) |≤ ∥aα1∥∞·#aα1 ·
∏k−1

i=1 βDi
i .

Since βi < p < 2b, Di ≤ Dl, and ∥aα1∥∞ ≤ 2h, we have | aα1(β) |≤ 2h · T ·
p(k−1)Dl . Hence,

Prob[p | aα1(β)] ≤
⌊ log2 (2h·T ·p(k−1)Dl)

log2 2b
⌋

| Pb |
≤ ⌊h+ log2 T +Dl(k − 1)b⌋

b | Pb |
.

Next, suppose that M̌i(zi) = liz
di
i +

∑di−1
j=1 ai,jz

j
i where ai,j is a polynomial in

Z[z1, . . . , zi−1]/⟨M̌1(z1), . . . , M̌i−1(zi−1)⟩. Since li ≤ 2m, we have

Prob[p | lc(M̌i)] ≤ Prob[p | ai,j] ≤
⌊m

b ⌋
| Pb |

≤ m

b | Pb |
for 1 ≤ i ≤ n. (1)

Thus,
∑n

i=1 Prob[p | lc(M̌i)] ≤ n m
b|Pb| . This completes the proof.

3.2 Det-bad Primes

Definition 5. Let p be a prime such that p ∤
∏n

i=1 lc(Mi, zi) and p ∤ lc(f2, x1).
Let γ = z1 + C1z2 + . . .+ Cn−1zn where 0 ̸= Ci ∈ Z for 1 ≤ i ≤ n− 1. A prime
p is called a det-bad prime if p | det(A), where A is the coefficient matrix of
powers of γ obtained from Algorithm 2.

This section bounds the probability that a randomly chosen prime p ∈ Pb s.t
p ∤

∏n
i=1 lc(Mi, zi), is det-bad. This requires an upper bound on | det(A) |. Let

f rem ⟨M̌n, . . . , M̌1⟩ denote the remainder of f divided by M̌n, . . . , M̌1 using a
natural long division. We illustrate the construction of matrix A over F = Q
using the following example.

8 Mahsa Ansari and Michael Monagan

Example 6. Let M1(z1) = z21 − 7
2 and M2 = z22 − 11

3 . Then M̌1 = 2z21 − 7 and

M̌2 = 3z22−11. Use the basis BL = {1, z2, z1, z1z2} forQ[z1, z2]/⟨M1(z1),M2(z2)⟩
of dimension d = 4. Take γ = z1 + 3z2, we have

γ0 = 1
γ1 = (z1 + 3z2)

1 mod ⟨M̌1, M̌2⟩ = z1 + 3z2
γ2 = (z1 + 3z2)

2 mod ⟨M̌1, M̌2⟩ = 6z1z2 +
73
2

γ3 = (z1 + 3z2)
3 mod ⟨M̌1, M̌2⟩ = 205

2 z1 +
261
2 z2

and A =


1 0 73

2 0
0 3 0 261

2
0 1 0 205

2
0 0 6 0

.
To bound the determinant of a matrix in Z, we can employ Hadamard’s

bound.

Theorem 3. [Hadamard’s bound] Let A be an n×n matrix with Ai,j ∈ Z. Then
| det(A) |≤

∏n
j=1

√∑n
i=1 A

2
i,j .

As illustrated in Example 6, matrix A ∈ Qd×d so we cannot use Hadamard’s
bound to bound | det(A) |. However, replacing long division with pseudo-division
in Algorithm algorithm 2, we can obtain the matrix Ã ∈ Zd×d for which Hadamard’s
bound can be applied. Define f1 prem ⟨M̌n, . . . , M̌1⟩ as the recursive pseudo-
remainder under M̌n through M̌1.We construct Ã such that its jth column is
the coordinate vector [γj−1 prem ⟨M̌n, . . . , M̌1⟩]BL

.

Example 7. Considering Example 6, using pseudo-division, we obtain:

γ0 = 1
γ1 = (z1 + 3z2) prem ⟨M̌1, M̌2⟩ = z1 + 3z2
γ2 = (z1 + 3z2)

2 prem ⟨M̌1, M̌2⟩ = 36z1z2 + 219
γ3 = (z1 + 3z2)

3 prem ⟨M̌1, M̌2⟩ = 3690z1 + 4698z2

and Ã =


1 0 219 0
0 3 0 4698
0 1 0 3690
0 0 36 0

 .

Although pseudo-division allows us to construct an integer matrix Ã ∈ Zd×d

suitable for Hadamard’s bound, natural division is significantly faster in practice.
For this reason, Algorithm 2 uses natural division. As shown in Corollary 2, the
determinants of A and Ã are related by det(Ã) = (

∏n−1
i=0 lc(M̌n−i)

∆i) det(A) for

some ∆i ∈ Z. Since p ∤
∏n

i=1 lc(Mi, zi), we have | det(A) |<| det(Ã) |. Therefore,
to bound | det(A) |, it suffices to bound | det(Ã) |. To do this, we need to bound
the entries of Ã. Among the vectors[γj]BL

, the largest entries occur in [γd−1]BL
.

Moreover, ∥γd−1 prem⟨M̌n, . . . , M̌1⟩∥∞ < ∥γd prem⟨M̌n, . . . , M̌1⟩∥∞. Thus, by
bounding the ∥γd prem⟨M̌n, . . . , M̌1⟩∥∞, we can use it as an upper bound for
Ãi,j . Note that deg(γj , zi) = j for 1 ≤ i ≤ n. We present Lemma 1 without
proof.

Lemma 1. Let f, g ∈ Z[z1, . . . , zn] and let M̌i = liz
di
i +

∑di−1
j=1 ai,jz

j
i be the

minimal polynomial of αi where ai,j ∈ Z[z1, . . . , zi−1]. we have,

(i) ∥fg∥∞ ≤ ∥f∥∞∥g∥∞ min(#f,#g).

(ii) deg(ai,j , zk) ≤ dk−1 for 1 ≤ k ≤ i−1 and #ai,j ≤
∏i−1

j=1 dj =
d

didi+1···dn
< d.

Notations 3. We adopt the following terminology throughout this section:

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 9

– γ = z1 + C1z2 + . . .+ Cn−1zn where 0 ̸= Ci ∈ Z for 1 ≤ i ≤ n− 1.
– di = deg(M̌i, zi).
– Di =

d∏i
j=1 dn−j+1

=
∏n−i

j=1 dj.

In Theorem 4, we bound ∥prem (γd, M̌n, zn)∥∞, the pseudo-remainder of γd

divided by the polynomial M̌n w.r.t zn.

Theorem 4. Let f = γd and r̃ = prem (f, M̌n, zn) where M̌n = lnz
dn
n +∑dn−1

j=0 ajz
j
n such that ln ∈ Z and aj ∈ Z[z1, . . . , zn−1] for 0 ≤ j ≤ dn − 1.

Let δ = d− dn + 1 be the maximum number of division steps. Then,

(i) deg(r̃, zn) ≤ dn − 1 and deg(r̃, zi) ≤ d+ δ(di − 1), for 1 ≤ i ≤ n− 1.
(ii) ∥r̃∥∞ ≤∥f∥∞(l + d/dn∥M̌n∥∞)δ.

Proof. Since f = γd, We have deg(f, zi) = d for 1 ≤ i ≤ n. Let f =
∑d

i=0 fiz
i
n

such that fi ∈ Z[z1, . . . , zn−1] for 1 ≤ i ≤ d.

(i) pquo(f, M̌n, zn) has degree d − dn so the pseudo-division of f by M̌n has
up to δ = d− dn + 1 steps. In the first step of the pseudo division, we have
r̃1 = lnf−fdz

d−dn
n M̌n. Hence, deg(r̃1, zn) ≤ d−1. Moreover, for 1 ≤ i ≤ n−1,

we have deg(fd, zi) ≤ deg(f, zi) = d and deg(M̌n, zi) ≤ di−1. Consequently,

deg(r̃1, zi) = max{deg(f, zi),deg(fd, zi) + deg(M̌n, zi)}
≤ deg(f, zi) + deg(M̌n, zi) ≤ d+ 1(di − 1).

If deg(r̃1, zn) ≥ dn, we continue the division. Let b1 = lc(r̃1, zn) and deg(r̃1, zn) =
d− 1. In the second division step, we have r̃2 = lnr̃1 − b1z

d−dn−1
n M̌n. Thus,

deg(r̃2, zn) ≤ deg(r̃1, zn)− 1 ≤ d− 2 and

deg(r̃2, zi) ≤ deg(r̃1, zi) + deg(M̌n, zi) ≤ d+ 2(di − 1).

Since the division algorithm has at most δ steps, in the last step, we have
deg(r̃, zn) ≤ d− δ = dn − 1 and deg(r̃, zi) ≤ d+ δ(di − 1).

(ii) In the first step of dividing f by M̌n using pseudo division, we have r̃1 = lnf−
fdz

d−dnM̌n. Thus, ∥r̃1∥∞≤∥lnf∥∞+∥fdM̌n∥∞. To compute an upper bound
for ∥fdM̌n∥∞, it is sufficient to compute an upper bound for ∥fdaj∥∞ where
aj ∈ Z[z1, . . . , zn−1]. Using part (ii) of Lemma 1, we have Taj

< d/dn which

implies that ∥fdaj∥∞ ≤∥fd∥∞∥M̌n∥∞min(Taj
, Tfd) ≤ d/dn∥fd∥∞∥M̌n∥∞

for 1 ≤ j ≤ dn − 1. Moreover, since ∥fd∥∞≤∥f∥∞, we obtain

∥r̃1∥∞≤ ln∥f∥∞+∥fdM̌n∥∞ ≤∥f∥∞(ln + d/dn∥M̌n∥∞).

Furthermore, deg(r̃1, zn) ≤ d − 1. If deg(r̃1, zn) ≥ dn, we continue the divi-
sion. In the second division step, we have r̃2 = lnr̃1 − b1z

d−dn−1
n M̌n where

b1 = lc(r̃1, zn). Since ∥b1∥∞≤∥r̃1∥∞, using the same strategy as the first
division step, we have

∥r̃2∥∞ ≤ ln∥r̃1∥∞+∥b1M̌n∥∞ ≤ ln∥r̃1∥∞+d/dn∥r̃1∥∞∥M̌n∥∞
≤∥r̃1∥∞(ln + d/dn∥M̌n∥∞) ≤∥f∥∞(ln + d/dn∥M̌n∥∞)2.

Continuing this argument, the result is obtained.

10 Mahsa Ansari and Michael Monagan

In Theorem 4, we bound ∥prem (γd, M̌n, zn)∥∞. In the following theorem,
Theorem 5, we apply Theorem 4 to bound ∥γd prem⟨M̌n, . . . , M̌1⟩∥∞.

Theorem 5. Let f = γd ∈ Z[z1, . . . , zn] and M̌i = liz
di
i +

∑di−1
j=0 bi,jz

j
i such

that li ∈ Z and bi,j ∈ Z[z1, . . . , zi−1] for 1 ≤ i ≤ n and 0 ≤ j ≤ di − 1. Let
r̃ = f prem⟨M̌n, . . . , M̌1⟩. Then ∥r̃∥∞ ≤∥f∥∞

∏n
i=1(ln−i+1 + Di∥M̌n−i+1∥∞)δi

where δ1 = d − dn + 1, and δi = d − dn−i+1 + 1 + (dn−i+1 − 1)
∑i−1

j=1 δj for
2 ≤ i ≤ n.

Proof. Since f = γd, we have deg(f, zi) ≤ d for 1 ≤ i ≤ n. Let r̃1 = prem (f, M̌n, zn)
and δ1 = d−dn+1 be the maximum number of division steps. From Theorem 4,
we have

∥r̃1∥∞ ≤∥f∥∞(ln +D1∥M̌n∥∞)δ1 . (2)

Let r̃2 = prem (r̃1, M̌n−1, zn−1). From Theorem 4 part (i), we have deg(r̃1, zn−1) ≤
d + δ1(dn−1 − 1) and deg(r̃1, zn−1) − dn−1 + 1 ≤ d − δ1(dn−1 − 1) − dn−1 + 1.
Thus, δ2 = d − δ1(dn−1 − 1) − dn−1 + 1 is the maximum number of division

steps. Let M̌n−1 = ln−1z
dn−1

n−1 +
∑dn−1−1

j=0 bn−1jz
j
n−1 such that ln−1 ∈ Z and

bn−1,j ∈ Z[z1, . . . , zn−2] for 0 ≤ j ≤ dn−1 − 1. Hence, applying Lemma 1, we
have #bn−1,j ≤ D2 = d

dndn−1
. Using the same strategy as the proof of part (ii)

of Theorem 4, we have

∥r̃2∥∞ ≤∥r̃1∥∞(ln−1 +D2∥M̌n−1∥∞)δ2

≤ ∥f∥∞(ln +D1∥M̌n∥∞)δ1︸ ︷︷ ︸
According to Equation 2

(ln−1 +D2∥M̌n−1∥∞)δ2 .

The result is obtained by repeating this process for polynomials M̌n−2, . . . , M̌1.

Corollary 1. Let r̃ = γd prem ⟨M̌n, . . . , M̌1⟩, li = lc(M̌i, zi), and δi be as
defined in Theorem 5. If ∥γd∥∞ ≤ 2C , then

| Ãi,j |≤ ∥r̃∥∞ ≤ 2C
n∏

i=1

(ln−i+1 +Di∥M̌n−i+1∥∞)δi .

Proof. This is a direct result from Theorem 5.

Theorem 6. Let δi be as defined in Theorem 5. Let p ∈ Pb be chosen randomly,
∥γd∥∞ ≤ 2C , and li = lc(M̌i, zi) then

Prob[p|det(Ã)] ≤
⌊d/2 log2 d+ d(C +

∑n
i=1 δi log2(ln−i+1 +Di∥M̌n−i+1∥∞))⌋

b | Pb |

Proof. To bound Prob[p | det(Ã)], we first bound | det(Ã) |. From Theorem 3
and Corollary 1, | det(Ã) |≤ dd/2(2C

∏n
i=1(ln−i+1 + Di∥M̌n−i+1∥∞)δi)d. Since

p ∈ Pb, we have log2 p < b. Thus,

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 11

Prob[p|det(Ã)] ≤
⌊ log2|det(Ã)|

log2 2b
⌋

| Pb |

≤
⌊d/2 log2 d+ dC + d

∑n
i=1 δi log2(ln−i+1 +Di∥M̌n−i+1∥∞)⌋

b | Pb |

Lemma 2. Let f1, f2 ∈ R[x] be non-zero polynomials with lc(f2) a unit, and 0 ≤
deg(f2) ≤ deg(f1). Let f1 = f2q(x) + r(x) be the natural division with r(x) = 0
or deg(r(x)) < deg(f2(x)). Suppose that r̃ = prem(f1, f2) and q̃ = pquo(f1, f2).
Then, r̃ = lc(f2)

δr and q̃ = lc(f2)
δq.

Proof. Multiplying both sides of the equation r = f1 − f2q by lc(f2)
δ, we have

lc(f2)
δr = lc(f2)

δf1 − f2(lc(f2)
δq). (3)

Subtracting Equation 3 from r̃ = lc(f2)
δf1 − f2q̃, we have r̃ − lc(f2)

δr = f2(q̃ −
lc(f2)

δq). Since deg(r),deg(r̃) < deg(f2) and f2 ̸= 0, we must have q̃−lc(f2)
δq =

0 which implies that q̃ = lc(f2)
δq and r̃ = lc(f2)

δr.

Theorem 7. Let r̃ = γd prem ⟨M̌n, . . . , M̌1⟩ and r = γd rem ⟨M̌n, . . . , M̌1⟩. Let
r0 = r̃0 = γd, ri = rem (ri−1, M̌n−i+1, zn−i+1), r̃i = prem (r̃i−1, M̌n−i+1, zn−i+1)
for 1 ≤ i ≤ n. Then, r̃ = r

∏n
i=0 lc(M̌n−i)

∆i where ∆i = dri −dn−i+1 such that
dri = deg(ri, zn−i) = deg(r̃i, zn−i) for 0 ≤ i ≤ n.

Proof. We compute r̃ and r step by step in parallel. First, r̃1 = prem (r̃0, M̌n, zn)
and r1 = rem (r0, M̌n, zn). By Lemma 2, r̃1 = lc(M̌n)

∆0r1. Next,

r̃2 = prem (r̃1, M̌n−1) = lc(M̌n−1)
∆1 r̃1 − M̌n−1q̃2 (4)

r2 = rem (r1, M̌n−1) = r1 − M̌n−1q2. (5)

Multiplying Equation 5 by lc(M̌n−1)
∆1 lc(M̌n)

∆0 we have

lc(M̌n−1)
∆1 lc(M̌n)

∆0r2 = lc(M̌n−1)
∆1 r̃1 − lc(M̌n−1)

∆1 lc(M̌n)
∆0M̌n−1q2.

Subtracting Equation 4 from above, we have

lc(M̌n)
∆0 lc(M̌n−1)

∆1r2 − r̃2 = M̌n−1(lc(M̌n)
∆0 lc(M̌n−1)

∆1q2 − q̃2).

Since deg(r2) and deg(r̃2) < deg(M̌n−1) and M̌n−1 ̸= 0, we have

lc(M̌n)
∆0 lc(M̌n−1)

∆1q2 − q̃2 = 0

which implies that q̃2 = lc(M̌n)
∆0 lc(M̌n−1)

∆1q2 and r̃2 = lc(M̌n−1)
∆1 lc(M̌n)

∆0r2.
Continuing this argument, in the last division we have r̃n =

∏n
i=0 lc(M̌n−i)

∆irn.
By construction, r̃ = r̃n and r = rn.

Corollary 2. det(Ã) =
∏n

i=0 lc(M̌n−i)
∆i det(A) where ∆i is defined in Theo-

rem 7.

12 Mahsa Ansari and Michael Monagan

Proof. Follows directly from Theorem 7.

Theorem 8. Let C, δi, and li be as defined in Theorem 6. Let p ∈ Pb be chosen
randomly such that p ∤

∏n
i=0 lc(M̌n−i) for 1 ≤ i ≤ n. Then

Prob[p | det(A)] ≤
⌊(d/2 log2 d+ d(C +

∑n
i=1 δi log2(ln−i+1 +Di∥M̌n−i+1∥∞)))⌋

b | Pb |
.

Proof. From Corollary 2, det(Ã) =
∏n

i=0 lc(M̌n−i)
∆i det(A) where ∆i ∈ Z. Since

p ∤
∏n

i=0 lc(M̌i) for 1 ≤ i ≤ n, we have Prob[p | det(Ã)] = Prob[p | det(A)]. Thus,

Prob[p | det(A)] = Prob[p | det(Ã)]

≤
⌊(d/2 log2 d+ d(C +

∑n
i=1 δi log2(ln−i+1 +Di∥M̌n−i+1∥∞)))⌋

b | Pb |
.

Now we can get a bound for ∥M(z)∥∞ where M(z) is the characteristic
polynomial obtained from Algorithm 2.

Theorem 9. Let M(z) be the characteristic polynomial obtained from Algorithm
2. Define BM = dd/2(2C

∏n
i=1(ln−i+1 +Di∥M̌n−i+1∥∞)δi)d, where C and li are

from Theorem 6. Then ∥M(z)∥∞≤ BM .

Proof. To construct M(z), we solve the linear system Aq = −[γd]BL
for q ∈ Qd

by Cramer’s rule, qk = det(A(k))
det(A) , where A(k) is the matrix formed by replacing the

k-th column of A by [γd rem ⟨M̌n, . . . , M̌1⟩]BL
for 1 ≤ k ≤ d. Thus, the largest

entries of A(k) appear in the k-th column. Applying the same justification as
Theorem 8, | det(A(k)) |≤| det(Ã(k)) |. Using Theorem 3, we have

| det(A(k)) |≤
d∏

i=1

√√√√ d∑
j=1

Ã
(k)
j,i

2 ≤ dd/2(2C
n∏

i=1

(ln−i+1 +Di∥M̌n−i+1∥∞)δi︸ ︷︷ ︸
Corollary 1

)d.

Since M̌i(zi) ∈ Z[z1, . . . , zi] for 1 ≤ i ≤ n, we have M(z) ∈ Z[z] which implies
that det(A) | det(A(k)). Thus, qk ∈ Z and qk ≤| det(A(k)) |≤ dd/2(2C

∏n
i=1(ln−i+1+

Di∥M̌n−i+1∥∞)δi)d.

3.3 Zero-Divisor Prime and Evaluation Point

PGCD runs over L̄p. Since L̄p is not a field, it is possible that PGCD encounters
a zero-divisor while trying to compute a gcd in lines 4, 6, 7, 8, 10, and 30. In
this section, we bound the probability that PGCD encounters a zero-divisor.

Definition 6. Let f1, f2 ∈ L̄Z[x2, . . . , xk][x1]. Let p be a prime and β ∈ [0, p)(k−1)

be an evaluation point such that (p, β) is not an lc-bad pair. We call the ordered
pair (p, β) a zero-divisor pair if Algorithm URES, Algorithm 3, returns FAIL
for the inputs ϕp(f1)(β) and ϕp(f2)(β) ∈ L̄p[x1].

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 13

Example 8. Let f1 = (x+1)w3+xz and f2 = (x+y+8z)w+zyx be two polyno-
mials in Z[z]/⟨z2⟩[x, y][w]. The ordered pair (p, β) = (7, (0, 0)) is a zero-divisor
unit since lc(f2, w)(β) mod 7 = z is not invertible over Z7[z]/⟨z2⟩[x, y][w]. Con-
sequently, Algorithm URES returns FAIL when attempting to make f2 monic.

Before bounding the probability of hitting a zero-divisor pair, we must first
define the subresultant polynomial remainder sequence (s.p.r.s.) and establish
its connection to the m.p.r.s.. This requires clarifying the relationships between
prem (f1, f2), rem (f1, f2), and mrem(f1, f2). We present Lemma 3 and Lemma 4
without proof.

Lemma 3. Let f1, f2 ∈ R[x] be non-zero polynomials with lc(f2) and lc(f1)
units, and 0 ≤ deg(f2) ≤ deg(f1). Let δ = deg(f1)− deg(f2) + 1. Then,

(i) rem (f1, f2) = lc(f1)mrem(f1, f2) and quo(f1, f2) = lc(f2)
−1lc(f1)mquo(f1, f2).

(ii) prem (f1, f2) = lc(f2)
δrem (f1, f2) and pquo(f1, f2) = lc(f2)

δquo(f1, f2).
(iii) prem (f1, f2) = lc(f2)

δlc(f1)mrem(f1, f2) and
pquo(f1, f2) = lc(f2)

δ−1lc(f1)mrem(f1, f2).

Lemma 4. Let f1, f2 ∈ R[x] be non-zero polynomials with lc(f2) a unit. Let
a, b ∈ R be units and δ = deg(f1)− deg(f2) + 1. Then,

(i) rem (af1, bf2) = a · rem (f1, f2) and quo(af1, bf2) =
a
b quo(f1, f2).

(ii) prem (af1, bf2) = abδ ·prem (f1, f2) and pquo(af1, bf2) = abδ−1pquo(f1, f2).
(iii) mrem(af1, bf2) = mrem(f1, f2) and mquo(af1, bf2) = mquo(f1, f2).

We are interested in a Polynomial Remainder Sequence (p.r.s.) that avoids
the appearance of fractions in the remainders. The Subresultant Polynomial
Remainder Sequence (s.p.r.s.) is such a sequence. We present two ways of defin-
ing the subresultants. The first way, Algorithm 4, uses pseudo-division for uni-
variate polynomials, and the second one, Definition 7, uses determinants. Let
S1, S2, S3, . . . , Sk be the s.p.r.s. obtained from Algorithm 4. Note that the last
subresultant is Sk = res(f1, f2, y). Theorem 10 presents a connection between
the remainders obtained from Algorithm 3, m.p.r.s. and Algorithm 4, s.p.r.s..

Theorem 10. Let f1, f2 ∈ R[x] be non-zero polynomials such that deg(f2) ≤
deg(f1). Suppose that Algorithm 3 and 4 do not fail for f1 and f2. Let r1, r2, . . . , rl
denote the m.p.r.s. from Definition 1 and let S1, . . . , Sk be the s.p.r.s. from Al-
gorithm 4. Let di = deg(Si) for 1 ≤ i ≤ k, we have,

S1 = r1

S2 = r2

S3 = (−lc(S2))
d1−d2+1r3

S4 = (−lc(S3))
d2−d3+1

lc(S2)(d1−d2)(d2−d3) r4 if deg(S1)− 1 ̸= deg(S2)

Si = (−lc(Si−1))
di−2−di−1+1

lc(Si−2)
di−2−di−1

ri if deg(Si−3)− 1 = deg(Si−2) for i ≥ 4

Si = (−lc(Si−1))
di−2−di−1+1lc(Si−3)

(di−3−di−2−1)(di−2−di−1)

lc(Si−2)
(di−3−di−2)(di−2−di−1) ri if deg(Si−3)− 1 ̸= deg(Si−2) for i > 4.

14 Mahsa Ansari and Michael Monagan

Algorithm 4: s.p.r.s. Algorithm

Input: f1, f2 ∈ R[y], non-zero polynomials such that deg(f1) ≥ deg(f2) ≥ 0
Output: Either the s.p.r.s. generated by f1, f2, S = S1, S2, . . . , Sk, or FAIL

1 m,n = deg(f1), deg(f2)
2 S1, S2 = f1, f2
3 if deg(f1) = 0 and deg(f2) = 0 then
4 return(S1, S2, 1)

5 if deg(f1) ̸= 0 and deg(f2) = 0 then
6 return(S1, S2, f

m
2)

7 c, r = 1, n
8 j, i = m− 1, 2// i counts the number of subresultants

9 S = S1, S2

10 while r ̸= 0 do
11 r = deg(Si)
12 if r = 0 then
13 return(S)

14 if c is not invertible in R then
15 return(FAIL)

16 Si+1 = prem(Si−1, Si)/(−c)j−r+2

17 if j ̸= r then
18 Si = (lc(Si)

j−rSi)/c
j−r

19 S = S, Si+1

20 j = r − 1
21 c = lc(Si)
22 i = i+ 1

23 return(S);

Proof. From Definition 1 and Algorithm 4, we have r1 = S1 = f1 and r2 =
S2 = f2. Comparing the iterations of Algorithm 1 with the iterations of Al-
gorithm 4, we prove the theorem. In the first iteration of Algorithm 1, we
have r3 = M1 − M2q3 = f1 − lc(f2)

−1f2q3. From Lemma 4, part (i), we have
r3 = rem (f1, f2). In the first iteration of Algorithm 4, we have j = d1 − 1,

c = 1, and r = deg(f2) = d2. We set S3 = prem (S1,S2)
(−c)j−r+2 = prem (f1,f2)

(−1)d1−d2+1 . From

Lemma 2, we have prem (f1, f2) = lc(f2)
d1−d2+1r3 which implies that S3 =

(−lc(S2))
d1−d2+1r3. If j ̸= r, we set S2 = lc(f2)

d1−d2−1f2. In the second iter-
ation of Algorithm 1, we have r4 = M2 − M3q4 where M2 = monic(f2) and
M3 = monic(r3). Apploying part (i) of Lemma 3, we have rem (f2, r3) =
lc(f2)r4. In the second iteration of Algorithm 4, we have i = 3, j = d2 − 1,
r = deg(S3), and c = lc(S2). Two cases are possible for S4. The first case hap-

pens if in the first iteration r = j. In this case, S4 = prem (S2,S3)
(−c)j−r+2 . Employing

Lemma 3, part (iii), we have prem (S2, S3) = lc(S2)lc(S3)
d2−d3+1mrem(S2, S3) =

lc(S2)lc(S3)
d2−d3+1r4. Thus, S4 = prem (S2,S3)

(−c)j−r+2 = (−lc(S3))
d2−d3+1

(lc(S2))d2−d3
r4. The sec-

ond case happens when r ̸= j in the first iteration. In this case, we replace

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 15

S2 by lc(S2)
d1−d2−1S2. Hence, c = lc(S2)

d1−d2 . Using Lemma 4, part (ii), we
have prem (lc(S2)

d1−d2−1S2, S3) = lc(S2)
d1−d2−1prem (S2, S3). Moreover, using

Lemma 3, part (iii), we have prem (S2, S3) = lc(S2)lc(S3)
d2−d3+1r4. Hence,

S4 =
prem (lc(S2)

d1−d2−1S2, S3)

(−c)j−d3+2
=

lc(S2)
d1−d2−1prem (S2, S3)

(−(lc(S2)d1−d2))d2−d3+1

=
lc(S2)

d1−d2−1lc(S2)lc(S3)
d2−d3+1r4

(−(lc(S2)d1−d2))d2−d3+1
=

(−lc(S3))
d2−d3+1

(lc(S2)d1−d2)d2−d3
r4.

Employing the same argument for i > 4, the result will be obtained.

Example 9. Let f1 = 24x6 + 12x5z + 8x4 + 2x3z + 8x2 + xz + 4 and f2 =
8x6+8x5z+4x4+8x3z+2xz+4 be two polynomials in LZ[x] = Z[z]/⟨z2−2⟩[x].
Table 1 demonstrates the s.p.r.s. obtained from Algorithm 4 and m.p.r.s obtained
from Algorithm 1 for the input polynomials f1 and f2. As seen, the coefficients of
the subresultants grow significantly. Particularly, S8, has the largest coefficient.

Table 1. s.p.r.s.

s.p.r.s. m.p.r.s.

S1 = 24x6 + 12x5z + 8x4 + 2x3z + 8x2 + xz + 4 r1 = 24x6 + 12x5z + 8x4 + 2x3z + 8x2 + xz + 4
S2 = 8x6 + 8x5z + 4x4 + 8x3z + 2xz + 4 r2 = 8x6 + 8x5z + 4x4 + 8x3z + 2xz + 4
S3 = 96x5z + 32x4 + 176x3z − 64x2 + 40xz + 64 r3 = −12x5z − 4x4 − 22x3z + 8x2 − 5xz − 8
S4 = −29696x4 − 3584x3z + 2560x2 − 7936xz − 1024 r4 = −29/18x4 − 7/36zx3 + 5/36x2 − 31/72xz − 1/18
S5 = 8765440x3z − 5480448x2 + 1642496xz + 3047424 r5 = 1605/841x3 − 2007/3364zx2 + 1203/3364x+ 279/841z
S6 = 13828096x2 − 63209472xz + 601096192 r6 = −6119/2289800x2 + 55941/4579600xz − 66497/572450
S7 = −47448064xz − 4034396160 r7 = −193670/44521x− 8233650/44521z
S8 = 131776013926 r8 = 132583327/32761

Corollary 3. Let f1, f2 ∈ L̄p[x1] with f2 ̸= 0 and 0 ≤ deg(f2) ≤ deg(f1). Sup-
pose that Algorithm 3 and Algorithm 4 do not fail for f1 and f2. Let r1, r2, . . . , rl
be the m.p.r.s. and S1, . . . , Sh be the s.p.r.s.. Then,

(i) l = h
(ii) lc(ri, x1) = u · lc(Si, x1) for a unit u ∈ L̄p.
(iii) deg(ri, x1) = deg(Si, x1)

Proof. (i) Since Algorithm 3 does not fail for f1 and f2, lc(ri) is invertible for
1 ≤ i ≤ l. Thus, we can alternate natural division with pseudo-division to
compute Si for 1 ≤ i ≤ l. According to Theorem 10, since lc(ri) is invertible,
lc(Si) is also invertible for 1 ≤ i ≤ l. Thus Algorithm 4 must have the same
number of division steps as Algorithm 3 which implies that l = h.

(ii) From part (i), Algorithm 4 terminates after l iterations so lc(Si) is invertible
for 1 ≤ i ≤ l. Thus, in Theorem 10 the fractions are units. Accordingly,
lc(ri) = u · lc(Si) for some unit u ∈ L̄p.

16 Mahsa Ansari and Michael Monagan

(iii) Since Algorithm 4 terminates after l iterations, lc(Si) is invertible for 1 ≤
i ≤ l. Thus, from Theorem 10, we have Si = uiri for a unit ui. Multiplying
by a unit does not change deg(ri). Hence, deg(ri) = deg(Si).

The second way of defining s.p.r.s. is to use determinants.

Definition 7. Let f1 =
∑m

i=1 aix
i
1 and f2 =

∑n
i=1 bix

i
1 ∈ R[x2, . . . , xk][x1] with

0 < n ≤ m. Let Mi,j be the (m+n− 2j)× (m+n− 2j) matrix determined from
sylv(f1, f2, x1) by deleting rows n− j+1 to n, rows m+n− j+1 to m+n, and
columns m+n−2j to n+m except for column m+n−i−j. The coefficients with
negative subscripts are zero(see Definition 7.3 in [10]). The j-th subresultant of
f1 and f2 w.r.t. x1 is the polynomial of degree j defined by

S(j, f1, f2, x1) = det(M0j) + det(M1j)x1 + · · ·+ det(Mjj)x
j
1.

Since det(Mij) = 0 for i > j, we can present S(j, f1, f2, x1) as

S(j, f1, f2, x1) = det(



am am−1 · · · a1 a2j−n xn−j−1
1 f1

am am−1 · · ·
· · ·

am aj+1 f1
bn bn−1 · · · b1 b2j−m xm−j−1

1 f2
bn bn−1 · · ·

· · ·
bn bj+1 f2


).

Theorem 11. Let S1, . . . , Sl be the s.p.r.s. obtained from Algorithm 4 for the
input polynomials f1, f2 ∈ R[x1] where R = Z[x2, . . . , xk] and deg(f2, x1) ≤
deg(f1, x1). Let 0 ≤ j ≤ deg(f2, x1) and S(j, f1, f2, x1) ̸= 0, then there exists
1 ≤ i ≤ l such that S(j, f1, f2, x1) = Si. In particular, S(0, f1, f2, x1) = Sl.

Proof. A direct consequence of the Subresultant Chain Algorithm, page 129, [5].

Theorem 12. Let f1 =
∑t

j=0 ajx
j
i and f2 =

∑s
j=0 bjx

j
i be non-zero polyno-

mials where aj , bj ∈ R[x1, . . . , xi−1, xi+1, . . . , xk] for 0 ≤ j ≤ s ≤ t. Let ϕ :

R[x1, . . . , xk] −→ R̃[x1, . . . , xk] be a ring homomorphism, deg(ϕ(f1), xi) = d1,i,
and deg(ϕ(f2), xi) = d2,i.

(i) If d1,i = t and 0 ≤ d2,i ≤ s, then

ϕ(res(f1, f2, xi)) = ϕ(at)
s−d2,ires(ϕ(f1), ϕ(f2), xi).

(ii) If d1,i < t and d2,i = s, then

ϕ(res(f1, f2, xi)) = (−1)s(t−d1,i)ϕ(bs)
t−d1,ires(ϕ(f1), ϕ(f2), xi).

(iii) If d1,i < t and d2,i < s, then ϕ(res(f1, f2)) = 0.

Proof. Parts (i) and (ii) follow similarly to Proposition 6 in Chapter 6 of [8]. For
(iii), when d1,i < t and d2,i < s, the Sylvester matrix ϕ(sylv(f1, f2, xi)) contains
at least one column of zeros. Thus, its determinant is zero.

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 17

Theorem 13. Let f1, f2 ∈ L̄Z[x2, . . . , xk][x1]. Let p be a prime and β ∈ [0, p)k−1

such that (p, β) is not lc-bad. Let Si be among s.p.r.s over R = Z[x2, . . . , xk, z]
and li = lc(Si, x1) ∈ Z[x2, . . . , xk][z]. If the ordered pair (p, β) is a zero-divisor
unit, then there exists i ≥ 2 such that p | res(li(β), M̌ , z).

Proof. By Definition 6, (p, β) is a zero-divisor pair if Algorithm URES returns
FAIL for the input polynomials ϕp(f1)(β), ϕp(f2)(β) ∈ L̄p[x1]. Let ri be the i-
th remainder computed by URES with i ≥ 2. The algorithm fails iff lc(ri) is
not invertible in L̄p for some i. By Theorem 10 and Corollary 3, there exists a
unit ui such that ϕp(Si(β)) = uiri so ϕp(li(β)) = ui · lc(ri). Thus, lc(ri) is not
invertible in L̄p iff ϕp(li(β)) is not invertible. Therefore, URES fails for ϕp(f1)(β)
and ϕp(f2)(β) iff gcd(ϕp(li(β)), ϕp(M̌), z) ̸= 1. By Theorem 1, this implies that
res(ϕp(li(β)), ϕp(M̌), z) = 0. Then, from Theorem 12, p | res(li(β), M̌ , z).

Let li be as defined in Theorem 13. As a consequence of Theorem 13, we have
Prob[(p, β) is a zero-divisor unit] ≤ Prob[p | res(li(β),M, z)]. To bound Prob[p |
res(li(β),M, z)], we first need an upper bound on the integer res(li(β),M, z). By
Hadamard’s bound, Theorem 3, this requires an upper bound on ∥M(z)∥∞ and
∥li(β)∥∞. Theorem 9 provides ∥M(z)∥∞ ≤ BM , so it remains to bound ∥li(β)∥∞.
Assume f1, f2 ∈ Z[X, z][x1] where X = x2, . . . , xk. Let Rx1

= res(f1, f2, x1) ∈
Z[X, z] and Rz = res(Rx1 , M̌ , z) ∈ Z[X]. We summarize some properties of Rx1

in Proposition 1 below, without proof.

Proposition 1. Let f1 =
∑m

i=0 ai(X, z)xi
1 and f2 =

∑n
i=0 bi(X, z)xi

1 be two
non-zero polynomials in Z[X, z][x1] such that deg(f1, z),deg(f2, z) ≤ d−1 where
d = deg(M, z). Let

– dx = maxkj=2(deg(f1, xj),deg(f2, xj))
– aM = maxmi=0(#ai(X, z)), bM = maxnj=0(#bj(X, z)), and TM = max(aM , bM)
– H = max(∥f1∥∞, ∥f2∥∞)

Then we have

(i) deg(Rx1
, X) ≤ (n+m)dx,

(ii) deg(Rx1
, z) ≤ (n+m)(d− 1),

(iii) #Rx1
≤ (n+m)!T

(n+m)
M ,

(iv) and ∥Rx1
∥∞ ≤ (n+m)!H(n+m)T

(n+m−1)
M .

For 0 ≤ i ≤ l , suppose that ∥Si∥∞ ≤ Bi and ∥Rx1
∥∞ ≤ Bl. Due to coefficient

growth in Algorithm 4, we have Bi ≤ Bl. Moreover, ∥li∥∞ ≤ ∥Si∥∞ which
implies that ∥li∥∞ ≤ Bi ≤ Bl. Accordingly,

Prob[p | res(li(β),M, z)] ≤ Prob[p | res(Rx1(β),M, z)]. (6)

From right-hand side of Equation 6, we have

Prob[(p, β) is a zero-divisor pair] ≤ Prob[Rz(β) = 0 or Rz(β) ̸= 0 and p | Rz(β)]

≤ Prob[Rz(β) = 0] + Prob[p | Rz(β)]. (7)

To bound Prob[Rz(β) = 0], we apply Schwartz-Zippel lemma as follows.

18 Mahsa Ansari and Michael Monagan

Lemma 5. (Schwartz-Zippel lemma) Let R be an integral domain and let S ⊆ R
be finite. Let f ∈ R[x1, x2, . . . , xk] be a non-zero polynomial with total degree D.
Then the number of roots of f in Sn is at most D|S|k−1. Hence, if β is chosen
at random from Sk, then Prob[f(β) = 0] = D

|S| .

Lemma 6. Let n, m, and dx be as defined in Proposition 1. Then Prob[Rz(β) =

0] ≤ d(n+m)dx

p .

Proof. From Proposition 1, we have deg(Rx1
, z) ≤ D where D = (n+m)(d− 1)

and deg(Rx1
, X) ≤ (n + m)dx. The Sylvester matrix sylv(Rx1

,M, z) contains
d rows of the coefficients of Rx1

, which are polynomials in Z[X], and at most
D rows of the coefficients of M(z), which lie in Z. Therefore, deg(Rz, X) ≤
d(n+m)dx. By the Shwartz-Zippel lemma, Prob[Rz(β) = 0] ≤ d(n+m)dx

p .

Lemma 7. Let p be a prime number and β ∈ [0, p)k−1. Then ∥Rx1(β)∥∞ ≤ BR,

where BR = p(n+m)dxT
(2n+2m−1)
M H(n+m)(n+m)2!.

Proof. From Proposition 1, we have deg(Rx1
, X) ≤ (n + m)dx, #Rx1

≤ (n +

m)!T
(n+m)
M , and ∥Rx1∥∞ ≤ (n+m)!H(n+m)T

(n+m−1)
M . Therefore,

∥Rx1
(β)∥∞ ≤ #Rx1

pdeg(Rx1
,X)∥Rx1

∥∞
≤ p(n+m)dxT

(2n+2m−1)
M H(n+m)((n+m)!)2.

Lemma 8. Let ∥M(z)∥∞ ≤ BM (from Theorem 9), and ∥Rx1
(β)∥∞ ≤ BR

(from Lemma 7). Assume that Rz(β) ̸= 0, Then,

Prob[p | Rz(β)] ≤
⌊(d+ (n+m)(d− 1))/2 log(dB2

R + (n+m)(d− 1)B2
M)⌋

b | Pb |
.

Proof. The matrix S = sylv(Rx1
(β),M, z) contains d rows of coefficients of

Rx1
(z) and deg(Rx1

(β), z) < d(n + m) rows of coefficients of M(z). Since
∥Rx1(β)∥∞ ≤ BR and ∥M(z)∥∞ ≤ BM , by Hadamard’s bound, we have

| det(S) |=| Rz(β) | ≤
d(n+m+1)∏

i=1

√√√√d(n+m+1)∑
j=1

S2
i,j ≤

d(n+m+1)∏
i=1

√√√√ d∑
j=1

B2
R +

d(n+m)∑
j=1

B2
M

≤ (dB2
R + d(n+m)B2

M)d(n+m+1)/2.

Hence, Prob[p | Rz(β) |≤ ⌊(d(n+m+1))/2 log2(dB
2
R+d(n+m)B2

M)⌋
b|Pb| .

Let B = d(n+m)dx

p +
⌊(d(n+m+1))/2 log(dB2

R+d(n+m)B2
M)⌋

b|Pb| obtained by combining

bounds from Lemma 6 and Lemma 8. From Equation 7, we have

Prob[(p, β) is a zero-divisor pair] ≤ B. (8)

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 19

Definition 8. Let f =
∑t

i=1 ai(xk)Yi(Xk) where ai ∈ L̄p[xk] and Yi is a mono-
mial in Xk = x1, . . . , xk−1. Define cont(f,Xk) = gcd(a1, . . . , at) ∈ L̄p[xk].

Let D = maxki=1(deg(f1, xi),deg(f2, xi)), and let #β be the number of
points required to interpolate x2, . . . , xk in the gcd. Then, #β ≤ (D + 1)k−1.
In PGCD, the probability that any gcd computation in lines 4, 6, 7, 8, 10,
or 30 fails is bounded by B as defined in Equation 8. Let Xi = x1, . . . , xi−1

for 2 ≤ i ≤ k. In line 6, to compute cont(f1, Xi), ≤ (D + 1)i−1 − 1 univari-
ate gcds are computed. But this is done for ≤ (D + 1)k−i evaluation points for
xi+1, . . . , xk, hence a total of ≤ (D+1)k−1 gcds. Thus, computing all cont(f1, Xi)
for 2 ≤ i ≤ k requires ≤ (k − 1)(D + 1)k−1 gcd computations. The same
applies to lines 7, and 30. Line 4 performs ≤ (D + 1)k−1 gcd computations.
Lines 8 and 10 each involve one gcd computation, which we can include in
the count for lines 6 and 7. Therefore, Prob[PGCD encounters a zero-divisor] ≤
3(k − 1)(D + 1)k−1B︸ ︷︷ ︸

Lines 6, 7, and 30

+(D + 1)k−1B︸ ︷︷ ︸
Line 4

= 3k(D + 1)k−1B.

3.4 Unlucky primes

Definition 9. Let f1, f2 ∈ L̄Z[x1, . . . , xk] be non-zero polynomials, and let g =
gcd(f1, f2) be their monic gcd. Let h1 and h2 denote the cofactors of f1 and
f2, respectively. Let p be a prime number such that p ∤ lc(f2), p ∤

∏n
i=1 lc(M̌i),

p is not a det-bad prime, and gcd(ϕp(f1), ϕp(f2)) exists. We call p unlucky if
deg(gcd(ϕp(h1), ϕp(h2)) > 0.

Example 10. Let f1 = (zx + y)(5x + 2y + z) and f2 = (zx + y)(5x + 9y + z)
be polynomials in L̄Z[x, y] where L̄Z = Z[z]/⟨z2 − 2⟩. By inspection, we have
h1 = 5x+ 2y + z, h2 = 5x+ 9y + z, and gcd(f1, f2) = zx+ y. Let p = 7. Then
gp = gcd(ϕp(h1), ϕp(h2)) = 5x + 2y + z and deg(gp) > 0. Thus, p = 7 is an
unlucky prime.

Theorem 14. Let f1, f2 ∈ L̄Z[x1, . . . , xk] be non-zero polynomials with cofac-

tors h1 and h2, respectively. If p is an unlucky prime, then p |
∏k

j=1 res(h1, h2, xj).

Proof. Let gp = gcd(ϕp(h1), ϕp(h2)). By Definition 9, if p is unlucky, then
deg(gp) > 0, i.e., gp ̸= 1. This implies there exists some variable xi such
that deg(gp, xi) > 0. Treat ϕp(h1) and ϕp(h2) as univariate polynomials in xi

over the ring L̄Z[x1, . . . , xi−1, xi+1, . . . , xk]. Then, by Theorem 1, gp ̸= 1 iff
res(ϕp(h1), ϕp(h2), xi) = 0. By Theorem 12, this implies

res(ϕp(h1), ϕp(h2), xi) = 0 ⇒ ϕp(res(h1, h2, xi)) = 0 ⇒ p | res(h1, h2, xi). (9)

Since Equation 9 holds for some xi, we conclude that p |
∏k

j=1 res(h1, h2, xj).

According to Theorem 14, the set of unlucky primes is finite.

20 Mahsa Ansari and Michael Monagan

Theorem 15. Let f1 and f2 ∈ L̄Z[x1, . . . , xk] be non-zero polynomials with co-
factors h1 and h2, respectively, and let g = gcd(f1, f2). Define TM = max(#h1,#h2),
t = maxki=1(deg(h1, xi)), s = maxki=1(deg(h2, xi)), and H = max(∥h1∥∞, ∥h2∥∞).
Let p ∈ Pb, then

Prob[p is unlucky] ≤ k
⌊log2 (t+ s)! + (t+ s− 1) log2 TM + (t+ s) log2 H⌋

b | Pb |

Proof. From Theorem 14, {p ∈ Pb s.t p is unlucky} ⊆ {p ∈ Pb s.t p |
∏k

j=1 res(h1, h2, xj)}.
Thus, for any p ∈ Pb,

Prob[p is unlucky] ≤ Prob[p |
k∏

j=1

res(h1, h2, xj)] ≤
k∑

i=1

Prob[p | res(h1, h2, xi)]

From Proposition 1 (iv), ∥res(h1, h2, xi)∥∞ ≤ (t + s)!T
(t+s−1)
M Ht+s for each

1 ≤ i ≤ k. Since p ∈ Pb, we have log2 p < b. Therefore, for each 1 ≤ i ≤ k,

Prob[p | res(h1, h2, xi)] ≤
⌊ log2 (t+s)!T

(t+s−1)
M Ht+s

log2 p ⌋
| Pb |

≤ ⌊log2 (t+ s)! + (t+ s− 1) log2 TM + (t+ s) log2 H⌋
b | Pb |

.

Summing over all k variables gives the final bound:

Prob[p is unlucky] ≤ k
⌊log2 (t+ s)! + (t+ s− 1) log2 TM + (t+ s) log2 H⌋

b | Pb |

3.5 Unlucky evaluation points

Definition 10. Let f1, f2 ∈ L̄p[x1, . . . , xk] with 0 ≤ deg(f2, xk) ≤ deg(f1, xk),
and suppose the monic g = gcd(f1, f2) exists. Let h1 and h2 denote the cofactors
of f1 and f2. Let βk ∈ [0, p) be chosen randomly such that lc(f2)(βk) ̸= 0, and
gβk

= gcd(f1(xk = βk), f2(xk = βk)) exists. We call βk an unlucky evaluation
point if deg(gcd(h1(xk = βk), h2(xk = βk))) > 0.

Example 11. Let g = (y+2z)x, f1 = g ·(x+z+4y+8) and f2 = g ·(x+2y+z+10)
be polynomials in L̄11[x, y] listed in the the lexicographic order with x > y
where L̄11 = Z11[z]/⟨z2 + 8⟩. Then gcd(f1, f2) = g. Choosing y = 1, we have
gcd(h1(y = 1), h2(y = 1)) = x+ z + 1 so y = 1 is an unlucky evaluation point.

Theorem 16. Let f1 and f2 ∈ L̄p[x1, . . . , xk] be non-zero polynomials, and
let monic g = gcd(f1, f2) exists. Let h1 and h2 be the cofactors of f1 and
f2. If βk ∈ [0, p) is an unlucky evaluation point, then xk = βk is a root of∏k−1

i=1 res(h1, h2, xi).

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 21

Proof. Let gβk
= gcd(h1(xk = βk), h2(xk = βk)). If βk ∈ [0, p) is unlucky,

then deg(gβk
) > 0, i.e., gβk

̸= 1. Hence, there exists some 1 ≤ i ≤ k − 1
such that deg(gβk

, xi) > 0. Treat h1(xk = βk) and h2(xk = βk) as univariate
polynomials in xi, over the ring L̄p[x1, . . . , xi−1, xi+1, . . . , xk−1]. Since gβk

̸= 1,
Theorem 1 implies res(h1(xk = βk), h2(xk = βk), xi) = 0. By Theorem 12,

res(h1, h2, xi)(xk = βk) = 0, i.e., xk = βk is a root of
∏k−1

i=1 res(h1, h2, xi).

Theorem 17. Let f1 and f2 ∈ L̄p[x1, . . . , xk] with 0 ≤ deg(f2, xk) ≤ deg(f1, xk).
Let monic g = gcd(f1, f2) exist and h1 and h2 be the cofactors of f1 and f2,
respectively. Define Ri = res(h1, h2, xi) and Dr = maxk−1

i=1 (deg(Ri, xk)). Let

βk ∈ [0, p). Then Prob[xk = βk is an unlucky evaluation point] ≤ (k−1)Dr

p−deg(f2,xk)
.

Proof. Since, in general, L̄p is not a field, the number of roots of Ri may exceed
deg(Ri, xk). To avoid this, assume Ri ∈ Zp[z][x1, . . . , xi−1, xi+1, . . . , xk−1][xk].

By Theorem 16, if xk = βk is an unlucky evaluation point, then
∏k−1

i=1 Ri(xk =

βk) = 0 so Prob[xk = βk is an unlucky evaluation point] ≤
∑k−1

i=1 Prob[Ri(xk =

βk) = 0]. For 1 ≤ i ≤ k, we have Prob[Ri(xk = βk) = 0] ≤ deg(Ri,xk)
p−deg(f2,xk)

≤
Dr

p−deg(f2,xk)
. Summing over all k − 1 variables yields the result.

To summarize, let #p be the number of primes used in MGCD, and #β be
the number of evaluation points used in PGCD. Then,

Prob[MGCD Fails] ≤ #p(#β(
⌊h+Dl(k − 1)b+ log2 T ⌋+ nm

b | Pb |︸ ︷︷ ︸
Prob[(p,β) is lc-bad](Theorem 2)

(10)

+ 3k(
d(n+m)dx

p
+

⌊(d(n+m+ 1))/2 log(dB2
R + d(n+m)B2

M)⌋
b | Pb |

)︸ ︷︷ ︸
Prob[PGCD encounters a zero-divisor](Equation 8)

(11)

+
(k − 1)Dr

p− deg(f2, xk)︸ ︷︷ ︸
Prob[xk = βk is an unlucky evaluation point](Theorem 17)

) (12)

+
⌊d/2 log2 d+ d(C +

∑n
i=1 δi log2(ln−i+1 +Di∥M̌n−i+1∥∞))⌋

b | Pb |︸ ︷︷ ︸
Prob[p is det-bad](Theorem 8)

(13)

+
k⌊log2 (t+ s)! + (t+ s− 1) log2 TM + (t+ s) log2 H⌋

b | Pb |︸ ︷︷ ︸
Prob[p is an unlucky prime](Theorem 15)

) (14)

4 Conclusion

We have analyzed all failure cases of the MGCD and PGCD algorithms of Ansari
and Monagan from [2] and have determined that the numerators in (10), (11),
(12), (13) and (14) of the failure probabilities are all polynomial in the sizes of the

22 Mahsa Ansari and Michael Monagan

input and output, namely, d the degree of Q(α1, . . . , αn), the size of the integer
coefficients in m̌1, m̌2, . . . , m̌n, f̌1, f̌2, g, the degrees of f1, f2 in x1, x2, . . . , xk, the
number of evaluation points used, the number of primes used, and the number
of terms of f1, f2, g.

References

1. Saban Alaca and Kenneth S. Williams. Introductory algebraic number theory.
2003.

2. Mahsa Ansari and Michael Monagan. Computing GCDs of multivariate polynomi-
als over algebraic number fields presented with multiple extensions. In Computer
Algebra in Scientific Computing, LNCS 14139, page 1–20. Springer, 2023.

3. Mahsa Ansari and Michael Monagan. A modular algorithm to compute the re-
sultant of multivariate polynomials over algebraic number fields presented with
multiple extensions. In Computer Algebra in Scientific Computing, volume 14938,
pages 27–46. Springer, 2024.

4. W. S. Brown. On Euclid’s Algorithm and the Computation of Polynomial Greatest
Common Divisors. J. ACM, 18:478–504, 1971.

5. B. Buchberger, George E. Collins, Rudiger Loos, and Rudolf Albrecht, editors.
Computer algebra: symbolic and algebraic computation (2nd ed.). Springer-Verlag,
Berlin, Heidelberg, 1983.

6. George E. Collins. The calculation of multivariate polynomial resultants. J. ACM,
18(4):515–532, oct 1971.

7. D. Cox, J. Little, and D. OSHEA. Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra. Springer,
2013.

8. David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative Algebra,
3/e (Undergraduate Texts in Mathematics). Springer-Verlag, 2007.

9. Mark J. Encarnación. Computing gcds of polynomials over algebraic number fields.
J. Symb. Comput., 20:299–313, 1995.

10. K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Springer, 1992.

11. Lars Langemyr and Scott McCallum. The Computation of Polynomial Greatest
Common Divisors over an Algebraic Number Field. J. Symb. Comput., 8(5):429–
448, 1989.

12. Michael Monagan. Maximal Quotient Rational Reconstruction: An Almost Opti-
mal Algorithm for Rational Reconstruction. In Proceedings of ISSAC 2004, pages
243–249. ACM, 2004.

13. Michael Monagan. Maximal Quotient Rational Reconstruction: An Almost Opti-
mal Algorithm for Rational Reconstruction. In Proceedings of ISSAC 2004, pages
243–249. ACM, 2004.

14. Mark van Hoeij and Michael Monagan. A Modular GCD Algorithm over Number
Fields Presented with Multiple Extensions. In Proceedings of ISSAC 2002, page
109–116. ACM, 2002.

5 Appendix A (Algorithms MGCD and PGCD)

Failure Probability of Computing monic gcd over Q(α1, . . . , αn) 23

Algorithm 5: MGCD

Input: f1, f2 ∈ L[x1, . . . , xk] where L = Q[z1, . . . , zn]/⟨M1(z1), . . . ,Mn(zn)⟩
Output: gcd(f1, f2)

1 M := 1

2 f1 := f̌1 and f2 := f̌2 // Clear fractions

3 while true do
4 Choose a new random prime p that is not lc-bad.
5 Choose C1, . . . , Cn−1 ∈ [1, p) at random and set γ = z1 +

∑n
i=2 Ci−1zi

6 Call Algorithm 2 with inputs [ϕp(M̌1), . . . , ϕp(M̌n)], Zp and ϕp(γ) to
compute M(z), A, and A−1

7 if Algorithm 2 fails then
8 Go back to step 4

// Apply Algorithm 6 to get the monic gcd over L̄p

9 Gp = PGCD(ϕγ(ϕp(f1)), ϕγ(ϕp(f2))) ∈ L̄p[x1, . . . , xk]
10 if Gp= FAIL then

// PGCD has encountered a zero-divisor.

11 Go back to step 4.

12 if deg(Gp) = 0 then
13 return(1)

// Convert Gp ∈ L̄p to its corresponding polynomial over Lp

14 Gp := ϕ−1
γ (Gp)

15 lm := lm(Gp) w.r.t lexicographic order with x1 > x2 . . . > xk

16 if M = 1 or lm < least // First iteration or all the previous

primes were unlucky.

17 then
18 G, least,M := Gp, lm, p

19 else
20 if lm = least then
21 Using CRT, compute G′ ≡ G mod M and G′ ≡ Gp mod p
22 set G = G′ and M = M · p
23 else if lm > least then

// p is an unlucky prime

24 Go back to step 4

25 H := Rational Number Reconstruction of G mod M
26 if H ̸= FAIL then
27 Choose a new prime q and b2, . . . , bn ∈ Zq at random such that

lc(H)(x1, b2, . . . , bk) ̸= 0
28 A, B, C := f1(x1, b2, . . . , bk), f2(x1, b2, . . . , bk), H(x1, b2, . . . , bk)

// A,B,C are polynomials in Lq[x1]
29 if C | A and C | B then
30 return(H)

24 Mahsa Ansari and Michael Monagan

Algorithm 6: PGCD

Input: f1, f2 ∈ L̄p[x1, . . . , xk]
Output: gcd(f1, f2) ∈ L̄p[x1, . . . , xk] or FAIL

1 Xk := [x1, . . . , xk−1]
2 prod := 1
3 if k = 1 then
4 H := gcd(f1, f2) ∈ L̄p[x1]
5 return(H)

6 c1 := cont(f1, Xk) ∈ L̄p[xk]. if c1 = FAIL then return(FAIL)
7 c2 := cont(f2, Xk) ∈ L̄p[xk]. if c2 = FAIL then return(FAIL)
8 c := gcd(c1, c2) ∈ L̄p[xk]. if c = FAIL return(FAIL)
9 f1, f2 := f1/c1, f2/c2

10 Γ := gcd(lc(f1, Xk), lc(f2, Xk)) ∈ L̄p[xk]. if Γ = FAIL return(FAIL)
11 while true do
12 Take a new random evaluation point, j ∈ Zp, which is not lc-bad.
13 F1j := f1(x1, . . . , xk−1, xk = j) and F2j := f2(x1, . . . , xk−1, xk = j)
14 Gj := PGCD(F1j , F2j , p) ∈ L̄p[x1, . . . , xk−1]

// lc(Gj) = 1 in lex order with x1 > x2 > . . . > xk−1

15 if Gj = FAIL then
16 return(FAIL)

17 lm := lm(Gj , Xk) // in lex order with x1 > x2 > . . . > xk−1

18 Γj := Γ (j) ∈ Zp

19 gj := Γj ·Gj // Solve the leading coefficient problem

20 if prod = 1 or lm < least then
// First iteration or all previous evaluation points were

unlucky.

21 least, H, prod := lm, gj , xk − j

22 else
23 if lm > least then

// j is an unlucky evaluation point

24 Go back to step 12.

25 else if lm = least then
// Interpolate xk in the gcd H incrementally

26 Vj := prod(xk = j)−1 · (gj −H(xk = j))
27 H := H + Vj · prod
28 prod := prod · (xk − j)

29 if deg(prod, xk) > deg(H,xk) + 1 then
// Make H primitive in L̄p[xk][x1, . . . , xk−1].

30 c3 = cont(H,Xk). if c3 = FAIL then return(FAIL) else H := H/c3.
// Test if H is the gcd of f1 and f2.

31 Choose b2, . . . , bk ∈ Zp at random such that lc(H)(x1, b2, . . . , bk) ̸= 0
32 A, B, C := f1(x1, b2, . . . , bk), f2(x1, b2, . . . , bk), H(x1, b2, . . . , bk)
33 if C | A and C | B then
34 return(c ·H)

	A Failure Probability Analysis of a Modular Algorithm to Compute the Monic GCD of Multivariate Polynomials over Algebraic Number Fields Q(1,…,n)

