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Abstract. Let Q(aa,...,an) be an algebraic number field. In 2023,
Ansari and Monagan designed a modular algorithm to compute the
monic ged g of two polynomials f1 and f2 in Q(aa,...,an)[z1,. .., Zk].
The algorithm computes g modulo primes and uses interpolation to re-
cover xs, T3, ..., Tk in g. However, the algorithm may fail in certain cases,
for instance, when encountering a zero divisor. In this paper, we present
a refined classification of failure cases for this algorithm and provide a
detailed analysis of their probabilities.
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1 Introduction

In 1967, Collins [6] introduced a modular algorithm for computing univariate
geds in Z[z] using homomorphic reductions and Chinese remaindering. In 1971
Brown [4] extended this approach to multivariate polynomials. Langemyr and
McCallum [11] subsequently adapted these algorithms to work over algebraic
number fields Q(«). Later, Encarnacion [9] used rational number reconstruction
to recover the rational coeflicients in the target ged and make the algorithm
for Q(a) output sensitive. In 2002, Monagan and Van Hoeij [14] generalized
Encarnacion’s method to treat polynomials in Q(ay, .. ., ay,)[z] but they did not
analyze the failure probability of their algorithm. Building on this foundation,
in 2023, Ansari and Monagan [2] proposed a modular algorithm for computing
the monic ged of polynomials in Q(ay, ..., a,)[x1,...,2x] but they too did not
do a failure probability analysis. Their algorithm, called MGCD (see Algorithm
5 in Appendix A), simplifies the computation over Q(a1,...,a,) by converting
the input polynomials to their corresponding polynomials over Q(y) where 7 is a
primitive element of Q(as, . . ., o, ). To avoid coeflicient growth, MGCD performs
computations modulo primes. It also reduces the multivariate gcd problem to
many univariate geds through evaluation, and then interpolates xo,x3, ..., %,
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in the result using dense interpolation. The univariate gcds are computed using
the monic Euclidean algorithm [14], which can fail if it encounters a zero divisor.
To recover the rational coefficients of the monic ged, MGCD employs Chinese
remaindering and rational number reconstruction. In this paper, we categorize
primes and evaluation points that can lead to failure and derive bounds on their
likelihood.

2 Preliminaries

Let Ly = Q. For each ¢ = 1,2,...,n, define L; = L;_1[z]/(M;(2;)) where
M;(z;) is the monic minimal polynomial of «; over L;_y. The field L = L, is
a Q-vector space of dimension d = []'_, d; where d; = deg(M;, z;) with ba-
sis Br, = {[/_(z:)%| 0 < e; <d;}. Since L = Q(cv,...,ay), computations in
Q(aa,...,a,) can be done by replacing each «; with the corresponding vari-
able z;, and then performing the computation within L. In algorithm MGCD
(see Algorithm 5 in Appendix A), we assume that the minimal polynomials
Mi(z1),..., M,(z,) are provided, which allows us to construct L. We denote
the coordinate vector of a € L w.r.t. the basis By, by [a]5, .

In this paper, R refers to a commutative ring with identity 1 # 0. Fix a
monomial ordering in R[xi,...,zx]. For f € R[xy,...,zx] denote its leading
coefficient and leading monomial by le(f) and Im(f), respectively. If f = 0, define
monic(f) = 0. If f # 0 and le(f) is a unit in R, then monic(f) = le(f)~Lf.
Otherwise, monic(f) = failed. Let f1, fo € R[x1,...,2k], and suppose a monic
g = ged(f1, f2) exists. Then g is unique [14], and there exist polynomials h; and
ho such that f; = hy - g and fo = hs - g; these are called cofactors of f; and fs,
respectively.

Example 1. Let L = Q[z1, 22]/(23 — 2,23 — 3) with basis By, = {1, 22, 21, 2122}
Let f1 = (222 + z1y)(z12 + y) and fa = (202 + z1y)(z — 22y) € L[z,y]. By
inspection, ged(f1, f2) = 202 + 21y. Fixing lexicographical order with x > y, the
monic ged is g = x + %legy.

Definition 1. Given f1, fa € R[z] with 0 < deg(f2) < deg(f1), assume that
Algorithm 1: Monic Euclidean Algorithm (MEA) does not fail for fi and fo and
terminates after [+1 iterations. We define the Monic Polynomial Remainder Se-
quence, m.p.r.s., generated by polynomials f1 and fo as the sequence r1,712,...,7]
obtained from the execution of the Monic Euclidean Algorithm such that ry = f1,
ro = fo, T3 =11 — Maqs, and ri10 = M; — M;11¢;41 with M; = monic(r;) and
deg(ri+1) < deg(r;) for2<i<l—1 and r;4; = 0.

Let Ly = Z|z1,...,2,). For any f € L[z], the denominator of f, denoted
by den(f), is the smallest positive integer such that den(f)f € Lz[z]. In ad-
dition, the associate of f is defined as f = den(h)h where h = monic(f).
The semi-associate of f, denoted by f, is defined as rf, where r is the small-
est positive rational number for which den(rf) = 1. For instance, let L be as
in Example 1 and f = %zlx + z2 € L[z]. Then den(f) = 2, f = 3z + 229,
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Algorithm 1: Monic Euclidean Algorithm (MEA)
Input: fi, fo € R[z] such that 0 < deg(f2) < deg(f1) and R is a commutative
ring with identity 1 # 0.
Output: Either the monic ged(fi, f2) or FAIL.

1 71,72 = f1, fo

2 Ml,i =T, 2

3 while r; # 0 do

4 M; = monic(r;)

5 if M; = failed then return(FAIL) // The algorithm encountered a
zero-divisor.

6 Set ri+1 to be the remainder of M;_; divided by M;

7 Seti=1i+1

8l=i—1

9 return(M;)

monic(f) =z + %zle and f = 3z + z122. To improve computational efficiency,
in a preprocessing step, MGCD clears fractions by replacing the input polyno-
mials f; and f; with their semi-associates. MGCD speeds up the computation
by mapping Q(a, ..., a,) to Q(v) where «y is a primitive element. This is done
using the LAminpoly algorithm, Algorithm 2, over F = Z, where p is a prime.
The computation is done mod p to prevent expression swell. However, not all the
primes result in the successful reconstruction of the monic ged. In the following
example, we explain how the LAminpoly algorithm works and how polynomials
over Q(aq,...,a,) are converted to Q(v).

Algorithm 2: LAminpoly

Input: [mi(z1),...,mn(2n)], fleld F =Zp, vy =21 + 31, Ci_12; with
C; € Z\ {0}

Output: FAIL or M(z) € F[2] s.t. M(y) = 0, matrix A, and A™*

Let d; = deg(mi(zi)), BLP = {H Zl-ei | 0<e; < dz}, d= Hdl

Initialize A as d X d zero matrix over F

go=1

fori=1 toddo

L Set column 7 of A to [gi_l]BLp

gi=7"gi1
if det(A) =0 then
L return (FAIL)
Compute A™! and set ¢ = A1 - (f[gd]BLP)

M(2) =2%+qz" "+ +a@
return (M(z), A, A™")
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Ezample 2. Given L as defined in Example 1, choose p = 5 so the ground
field in LAminpoly algorithm is F = Zs. After reducing the minimal polyno-
mials modulo p, we have Ls = Zs[z1,22]/(27 + 3,23 + 2) with basis B, =
{1,29,21,2122}. Let v = 21 + 2z9. Algorithm 2 checks whether v is a primitive
element of L or not. If 7 is a primitive element, then Algorithm 2 computes the
characteristic polynomial of v, M(z), so we can construct Ly = Zs[z]/(M(z))
such that Ls = Ls. LAminpoly algorithm first constructs the 4 x 4 matrix
A = [[1,0,0,0],[0,1,0,4],[0,1,0,1],[0,0,2,0]] whose i’th column is [']p, ~for
0 < < 3. Since det(A) =9 mod 5 # 0, we consider v = z1 + 22 as a prim-
itive element of Zs(1/2,v/3). If we had chosen p = 3, then det(A) mod p = 0
and A would not be invertible. We call 3 det-bad prime and define it in sec-
tion 3. Computing ¢ = A~! - (—[y%]p, ), we construct the characteristic polyno-
mial M(z) = 24 + qzz4 ' + ... + 2z + q1. Thus, we have M(z) = z* + 1 and
E5 = Z5[Z}/<Z4 + ].>

Notations 1. We use the following notation in this paper.

— Let p be a prime such that p { [\, le(M;). Let m;(2;) = M; mod p for
1 <i<mn. Define L, = Zy[z1, ..., 2n]/{Mm1,...,mp).

— L, = 7Z,[2]/{(M(2)) where M(z) is obtained from Algorithm 2 over Z,.

— Ly = Z[z]/(M(z2)) where M(z) is obtained from Algorithm 2 over Q.

Let Br, = {[Tj,(z)% st 0 < e; < d;} and By = {1,2,2%...,2%7"}
be bases for L, and Ep, respectively. Let C' : L, — Zg and D : Ep — Zg
be bijections such that C(a) = [a]p,, and D(b) = [b]sz' Define ¢, : L, —
Ly, such that ¢, (a) = D~'(A~" - C(a)), where A is the matrix obtained from

the LAminpoly algorithm over F' = Z,. Moreover, ¢ 1. L, — L, such that
¢, (b) = C~1(A-D(b)).

ol

Example 3. Let f; € L be the polynomials in Example 1 and let Ls = Ls where
Ls = Zs[2]/(z* + 1) obtained from Example 2. Let By, = {1, 22,21, 2122} and
A be the matrix computed in Example 2. We have, [fi]p, = 22y, vy, y?, 22]T
and b= A~"-[fi]p, = [2zy,2xy +3y*, 227, 3xy + 3y?] as the coordinate vector
of ¢, (f) relative to By = {1,z, 22, 23}. Therefore,

¢, (f) = 22227 + (32° + 22 + 2)yx + (32% + 32)y? € Ly[x,yl.

Note that L, is a finite ring with p? elements which likely has zero divisors.
After computing ¢ (f1), ¢+ (f2) € Lp[x1, ..., xx], the MGCD algorithm invokes
PGCD (see Algorithm 6 in Appendix A) to compute the monic ged over L.
PGCD is recursive. For k = 1 it applies the monic Euclidean Algorithm (MEA)
[14]. For k > 1, PGCD uses a sequence of evaluation points to reduce the multi-
variate problem to the univariate case. It then uses MEA to compute the ged. If
MEA fails (e.g., due to encountering a zero-divisor), a new prime and evaluation
point are chosen. PGCD reconstructs the ged over L, via dense interpolation.
Once PGCD returns the monic ged over L,,, MGCD applies oy ! to undo ¢, and
map the ged from L, to its corresponding polynomials in L,. To reconstruct
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the rational coefficients in g, MGCD applies Chinese remaindering and rational
number reconstruction [12,13]. We give an example of MGCD to illustrate the
treatment of zero-divisors in L,, and to motivate the use of a primitive element.

Ezxample 4. Continuing Example 1, let MGCD pick p = 5 and define Ly =
Zs[z1, 22]/{ 2% + 3,23 +2). From Example 2, we have L, = Zs[2]/(2* + 1). After
converting fi and f2 to ¢, (f1) and ¢, (f2) € Ly[z,y] as in Example 3, Algorithm
PGCD chooses a random evaluation point, y = 2, and tries to compute g; =

ged((¢4(f1)(y = 2), ¢4 (f2)(y = 2)) where

oy (f1)(y =2) = 22%2% + (2° + 4z + )z + 22° + 22
by (f2)(y =2) = (32° + 22)a” + (2° + 2 + 4)x + 227

However, MEA fails after the second iteration since lc(r3) = 42 + 2z is not
inverible over L,. We call (p, ) = (5,2) a zero-divisor pair.

Next, MGCD retries with p = 7 so Ly = Zq[z]/{z* + 422 + 1). At y = 1,
PGCD computes g1 = ged(¢(f1)(y = 1), ¢+ (f2)(y = 1)) = 622 + z + 5. Notice
that Im(g1) = x. A second evaluation at y = 0 yields go = ged(p~(f1)(y =
0), d,(f2)(y = 0)) = 2% which is discarded as lm(g2) = 2% > lm(g;), making
y = 0 an unlucky evaluation point. Further evaluations at y = 3 and y = 4
allows interpolation of the monic ged at y so g, = ged(d~(f1), d4(f2)) = = +
(62 +5)y € Ly[z,y]. Applying ¢ ' maps g, back to Ly[x,y]. That is, ¢7'(g,) =
1+(62245)y € L7[z,y]. MGCD then attempts to reconstruct rational coefficients
of g using Chinese remaindering and rational number reconstruction, but one
modular image is insufficient. After doing the above process for additional primes
p=11,p=13 and p = 17, reconstruction succeeds, yielding the correct monic

ged ged(fy, fo) =+ %yZQZl € Llz,y].

Definition 2. The resultant of f1 and fo w.r.t. the variable x; is defined as

res(f1, fo, xi) = det(sylv(fi, f2, %)) € R[z1, ..., i1, Tit1 ..., x| wheresylv(fi, fo, z:)
is the Sylvester matriz of fi and fo w.r.t. the variable x;.

Theorem 1. (See Corollary ( Sylvester’s Criterion), chapter 7 of [10].) Let
f1, f2 € R[z] and suppose g = ged(f1, f2) exists. Then deg(g,x) > 0 if and only
Zf res(fl, fg) =0.

Algorithm 3 URES from [3] computes res(fi, fo) where fi, fo € R[z]. We
note that Algorithm MEA fails if and only if Algorithm URES fails.

3 Failure Probability

In [2], we categorized the evaluation points that lead to failures in our PGCD
algorithm into three types: lc-bad, zero-divisor, and unlucky evaluation points.
Similarly, for the MGCD algorithm, we identified four types of primes that may
cause failures: det-bad, lc-bad, zero-divisor, and unlucky primes. In this section,
we refine these classifications and present a probabilistic analysis of their impact
on the success of the MGCD algorithm.
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Algorithm 3: URES

Input: fi1, fo € R[z] such that 0 < deg(f2) < deg(f1) where R is a
commutative ring with identity 1 # 0.

Output: Either res(f1, f2) or FAIL.

7‘1:f177'2:f2,’i:2

My=7r,R=10v=0

n1 = deg(f1) ;n2 = deg(f2)

while r; # 0 do

M; = monic(r;)

if M; = failed return (FAIL)// The algorithm encounters a
zero-divisor.

Set ri+1 to be the remainder of M;_; divided by M;

Set n;41 = deg(ri+1)

9 if niy1 < 0 and n; # 0 then return(0)// If ged(f1, f2) is a constant,

then res(f1, f2) =0

10 Set R =R -lc(r;)™i—!

S UL A WN -

®

11 Set v =v+nini—1
12 | Seti=i+1
13 R=(-1)"R

14 return(R)

Notations 2. We use the following notations in this section.

— #f denotes the number of terms of f € R[xy,...,xx].

- dz = deg(Mi, Zz) and d = H:»L:l dz

— Py = {all b-bit primes}, that is, primes in (2°71,2°). In our current code, we
use 31-bit primes and | P31 |= 50,697, 537.

Definition 3. Let f € Lyz[z1,...,x,y]. We denote the height of f by || fllc
and define it as the absolute value of the largest integer coefficient of f in mag-
nitude.

Let f1, f2 € R[x] be two non-zero polynomials such that le(f2) and le(f1) are
units, and 0 < deg(f2) < deg(f1). Then

— Let rem (f1, f2) and quo(fi, f2) denote the remainder and quotient of f;
divided by fa, where rem (f1, fo) = 0 or deg(rem (f1, f2)) < deg(f2), i.e.,
rem (f1, f2) = f1 — f2 quo(f1, f2).

— Let mrem(fy, f2) and mquo(fi, f2) be the remainder and quotient of monic( f;)
divided by monic(f2) i.e., mrem(f1, fo) = monic(f;)—monic(f2) mquo(f1, f2).

— Let prem (fi, f2) and pquo(fi, f2) be the pseudo-remainder and pseudo-
quotient of f; divided by fs.

3.1 Lc-bad pairs

Definition 4. Let f1, fo € Lz[z1,. ..,z be non-zero polynomials with deg(f2) <
deg(f1). Let p be a prime and 5 € [O,p)kv_1 be an evaluation point. We call the
ordered pair (p, ) le-bad if p | [, 1c(M;, z;), or p | le(fa, z1)(B).
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Example 5. Let fi = (y + 2)2% + 2z and fo = (y + 1)z + 2z be polynomials in
Ly[x,y]. The ordered pair (p, 8) = (7,6) is le-bad since 7 | le(fa, 2)(6) = 7.

Theorem 2. Let f1,fo € Lz[xq,...,xk] with 0 < deg(f2) < deg(f1), and
e(fa, 21)|loo < 27, T = #lc(fo, 1). Let 1c(M;,2;) < 2™ for 1 < i < n, and
let D; = max?_, (deg(lc(fa, x1), ;). If p is chosen at random from Py and B is

chosen at random from [0,p)*~1, then

[h+ Di(k—1)b+1og, T] +nm

Prob|(p, is le-bad) <
rob[(p, 8) is lc-bad] b Py ]

Proof. By definition,
Prob[(p, 3) is le-bad] = Prob[p | lc(fa, 21)(B) V p|le(M;, 2;) for some 1 < i < n]

< Problp | le(f2,21)(8)] + ZProb[p | le(M;, 2)].

=1

Write le(f2, 1) = Zzzl o, (X)ZY € Llws, ..., xp][21,. .., 2] Whit a; = (aiy, ..., 0i,) €

Z8g and Z% = 2z; " -+ zp™ and aq,(X) € Z[z2, ..., x]. Then,
Prob[p | le(f2,21)(8)] = Probp [ aa, (B) A... Ap| aa,(B)] < Probp | aq, (B)].

Let D; = deg(aa,, zit1) for 1 <i <k—1s0| aq, (B) |< ||, ||oo'#aa1'nf:_11 /BlDl
Since B; < p < 2°, D; < Dy, and ||an, ||o < 2", we have | a,,(8) |[< 2" - T -
p*=DD1 Hence,

noppE=1)Dyy

|82 2 Tp I h+log, T+ Dy(k—1)b

PI"Ob[p | aal (ﬁ)] S ! g2 e >~ |_ + Og2 + l( ) J
| Py | b|Py |

Next, suppose that M;(z) = liz;ii + Zjlz_ll az-yjzf where a; ; is a polynomial in
Z[Zl, ceey Zifl]/<M1(21), ey Mifl(zifl». Since 11 S 2m7 we have

Prob|p | Ic(M;)] < Prob[p | a; ;] < %] mn

Thus, Y"1, Prob[p | le(M;)] < nyp;r- This completes the proof.

3.2 Det-bad Primes

Definition 5. Let p be a prime such that p t [, le(M;, ;) and p { le(fa, 7).
Let y=21+Cizo4+ ...+ Cph_12, where 0 £ C; € Z for1 <i<n—1. A prime
p is called o det-bad prime if p | det(A), where A is the coefficient matriz of
powers of v obtained from Algorithm 2.

This section bounds the probability that a randomly chosen prime p € P, s.t
pt 1, le(M;, 2), is det-bad. This requires an upper bound on | det(A) |. Let
f rem (M,,..., M) denote the remainder of f divided by M,, ..., M; using a
natural long division. We illustrate the construction of matrix A over F = Q
using the following example.
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Example 6. Let My(z1) = 22 — % and My = 23 — 1—31 Then M, = 222 — 7 and
My = 325 —11. Use the basis By, = {1, 22, 21, 2122} for Q[21, z2] /(M1 (21), M2(22))
of dimension d = 4. Take v = 21 4+ 322, we have

P =1 T 102 0
! = (21 + 322)! mod (My, M) = 21 + 3z and  A— 030 %1
7? = (21 + 322)° mod (M, M) = 6212, + 5 010 2P

3 = (21 + 322)3 mod (M, My) = %zl + 2%22 006 O

To bound the determinant of a matrix in Z, we can employ Hadamard’s
bound.

Theorem 3. [Hadamard’s bound] Let A be an n xn matriz with A; ; € Z. Then
| det(A) [< TTj=y /2 i A7 -

As illustrated in Example 6, matrix A € Q4%¢ so we cannot use Hadamard’s
bound to bound | det(A) |. However, replacing long division with pseudo-division
in Algorithm algorithm 2, we can obtain the matrix A € Z9* for which Hadamard’s
bound can be applied. Define f; prem (Mn, .. .,M1> as the recursive pseudo-
remainder under M, through M;.We construct A such that its jth column is
the coordinate vector [y/~! prem (M,,, ..., M)]5, .

Ezample 7. Considering Example 6, using pseudo-division, we obtain:

Y =1 10219 0
71 = (21 + 329) prem (M, Ms) = 2 + 325 e 03 0 4698
s = (21 + 329)2 prem (My, M) = 362120 219 |44 Jo1 0 3690
v3 = (21 + 329)3 prem (M, M) = 3690z, + 46982, 0036 O

Although pseudo-division allows us to construct an integer matrix A € Z4*?
suitable for Hadamard’s bound, natural division is significantly faster in practice.
For this reason, Algorithm 2 uses natural division. As shown in Corollary 2, the
determinants of A and A are related by det(A) = (H?;()l lc(M,,_;)?%) det(A) for
some A; € Z. Since p { [[1_, le(M;, 2;), we have | det(A) |<| det(A) |. Therefore,
to bound | det(A) |, it suffices to bound | det(A) |. To do this, we need to bound
the entries of A. Among the vectors[y/]p, , the largest entries occur in [y?~ 1], .
Moreover, |y9=! prem(M,,, ..., M;)|c < |7 prem(M,, ..., M;)||s. Thus, by
bounding the ||y¢ prem(M,, ..., M;)| s, we can use it as an upper bound for
fli,j. Note that deg(y?,2;) = j for 1 < i < n. We present Lemma 1 without
proof.

Lemma 1. Let f,g € Z[z1,...,2,) and let M, = lizfi + Zj;ll am-zf be the
].

minimal polynomial of o; where a; ; € Z]z1,...,zi—1]. we have,
(i) [1f9lloc < [Iflloollglloo min(#f, #9). ,
(i1) deg(ai j,zk) < dp—1 for1 <k <i—1 and #a;; < H;;ll d; = m <d.

Notations 3. We adopt the following terminology throughout this section:
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—v=z21+Cz2+...+Ch12, where 0 £ C; €Z for 1 <i<n—1.
— d; = deg(M;, 2;).

- Di=——d T 4.
C I dnmia HJ:l J

In Theorem 4, we bound [|prem (v%, My, )|/ 00, the pseudo-remainder of ¢
divided by the polynomial M, w.r.t z,.

Theorem 4. Let f = v* and ¥ = prem (f, Mn,zn) where M,, = lnzg" +
Z?;gl ajzl such that l, € Z and aj € Zlz1,...,2p-1) for 0 < j < d, — 1.
Let 6 =d —d, + 1 be the maximum number of division steps. Then,

(i) deg(7,2,) < d, — 1 and deg(7,2;) < d+d(d; — 1), for 1 <i<n—1.

() 7]l I flloo(l + d/dnl|Mp]lo0)’-

Proof. Since f = v?, We have deg(f,z;) =dfor 1 <i <n. Let f = Z?:o fizt

such that f; € Z[z1,...,2,-1] for 1 <i < d.

(i) pquo(f, M,,z,) has degree d — d,, so the pseudo-division of f by M, has
up to 6 =d —d, + 1 steps. In the first step of the pseudo division, we have
71 = lnfffdzg*d"Mn. Hence, deg(71, 2,,) < d—1. Moreover, for 1 <i < n—1,
we have deg(fq, ;) < deg(f, z;) = d and deg(M,, z;) < d; — 1. Consequently,

deg(Fh Zi) = max{deg(f, Zi)a deg(fda Zi) + deg(Mn7 ZZ)}

If deg(71, 2 ) > dy, we continue the division. Let by = 1c(74, 2,,) and vdeg(fl, Zn) =
d — 1. In the second division step, we have 7y = [,,71 — by 23~ ~1M,,. Thus,
deg(7a, z,) < deg(71,2,) —1 < d—2 and

deg(7q, ;) < deg(71,2;) + deg(Mn, z) <d+2(d; — 1).

Since the division algorithm has at most § steps, in the last step, we have
deg(7,2n,) <d—06 =d, — 1 and deg(7,2;) < d+0(d; — 1).

(ii) In the first step of dividing f by M,, using pseudo division, we have 71 = [, f —
faz?=% M,,. Thus, ||71 ||eo <|[lnf|lse+ || faMp||oe- To compute an upper bound
for || faMy|| 0o, it is sufficient to compute an upper bound for || f4a;||« where
aj € Z[z1,. .., Zn—1]. Using part (ii) of Lemma 1, we have T, < d/d,, which
implies that [|faa;llec <[/ falloc |[Mnllcemin(Ta,,Ty,) < d/dnl|falloc||[Mnll
for 1 < j <d, — 1. Moreover, since || fa|loo<||f]|co, We obtain

171 lloo < Lall Flloo I faMnlloo <N flloo (n + d/dn]| My oo)-

Furthermore, deg(7, z,,) < d — 1. If deg(71, 2n) > dn, we continue the divi-
sion. In the second division step, we have 7o = 1,71 — blzg’d"*Mn where
b1 = lc(71, zp). Since ||b1]/co<||71]|o0, using the same strategy as the first
division step, we have

||f2||oo < ln”’:l”ooJFHbanHoo < ln”fl||oo+d/dn||7zl||00”MnHoo
<71 lloo (b + d/dn || Manloo) <[l flloo(In + d/dn]| My |00 ).

Continuing this argument, the result is obtained.
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In Theorem 4, we bound |[prem (74, Mn,zn)Hoo In the following theorem,
Theorem 5, we apply Theorem 4 to bound ||y prem(M,, ..., M1)||co.

Theorem 5. Let f = v € Z[z1,...,2,] and M; = ;2% —|—Z b, 2] such
that l; € Z andb” EZ[Z1,.. ,zie1) for 1 < i< m and0<j <d; —1. Let
r=f prem(M .. Ml> Then ||7||oo <||fHOOH; 1(n i+1+ D ”Mn H—lHOO) ‘
where & = d—dp+ 1, and 6; = d —dp_i11 + 1 + (dn—it1 — )Z (5 for
2<1<n.

Proof. Since f = 44, we have deg(f, z;) < dfor 1 <i < n.Let# = prem (f, M, z,)
and 01 = d—d, + 1 be the maximum number of division steps. From Theorem 4,
we have

I7lloe <N flloo (tn + Dil|Malloo) ™ (2)

Let 7 = prem (71, M,,_1, z,_1). From Theorem 4 part (i), we have deg(71, z,_1) <
d+ 61(dn_1 — 1) and deg(ﬁ,zn_l) —dp1+1<d- (51(dn_1 - 1) —dy_1+ 1.
Thus, §y = d — §1(dp—1 — 1) —dp_ 1 + 1 is the maximum number of division
steps. Let My,_1 = l,_ 1z” 1—|—Z"1 'y by 1z _1 such that [,,_; € Z and
b1, € Zlz1,...,2n—2] for 0 < j S dn—1 — 1. Hence, applying Lemma 1, we
have #b,_1; < Dy = . Using the same strategy as the proof of part (ii)
of Theorem 4, we have

d
dn dn -1

||7:2||oo Sufllloo(ln—l + 1)2”]\Zn—1||oo)62
< | Fllso(n + Dal| My l00)* (In—1 + Do My —1]l00)*?

According to Equation 2

The result is obtained by repeating this process for polynomials M,,_o, ..., M.

Corollary 1. Let # = ~v% prem (M,,..., M), l; = lc(M;,z), and &; be as
defined in Theorem 5. If |7%]|oo < 2, then

| Aij 1< [17lloo <29 T[ (i1 + Dill M1l
i=1
Proof. This is a direct result from Theorem 5.

Theorem 6. Let §; be as gleﬁned in Theorem 5. Let p € P, be chosen randomly,
17 lee < 2¢, and I; = 1c(M;, z;) then

[d/21ogy d + d(C + 307, 6ilogy(ln—it1 + Dil| Mp—is1]l0)))
b|Py |

Prob|p| det(A)] <

Proof. To bound Problp | det( A)], we first bound | det(A ) |. From Theorem 3
and Corollary 1, | det(A) |< d¥/2(2° [T}, (ln—i+1 + Dil|Mn—it1]ls0)%)?. Since
p € Py, we have long < b. Thus,
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I_ log, |det(A)] J

= log, 2b
Prob[p| det(A)] <
| Py |
o ld/2logyd+dC +d3 L, 6ilogy(ln—it1 + Dy[| My i1 ]l0)]

- b|Py |

Lemma 2. Let f1, fo € R[z] be non-zero polynomials with 1c(f2) a unit, and 0 <
deg(f2) < deg(f1). Let f1 = faq(x) + r(z) be the natural division with r(z) =0

or deg(r(z)) < deg(f2(w)). Suppose that 7 = prem(f1, f2) and ¢ = pquo(fi, f2).
Then, 7 = lc(f2)°r and G = lc(f2)?q.

Proof. Multiplying both sides of the equation r = f; — foq by lc(f2)®, we have
le(f2)°r =le(f2)° f1 = fo(le(f2)°q). 3

N

Subtracting Equation 3 from 7 = lc(f2)° f1 — fod, we have 7 — lc(f2)0r = fo(q —
lc(f2)°q). Since deg(r), deg(7) < deg(f2) and fa # 0, we must have G—lc(f2)°q =
0 which implies that § = lc(f2)%q and 7 = le(f2)%r.

Theorem 7. Let 7 = ¢ premv(Mn, .., M) and r = 4% rem <Ml“ .., My). Let
ro = 7:0 = ’yd; r; = rem (Ti_:[, Mn—i+}7 Zn—i+1)7 7:1 = preim (7:’5_17 Mn_i+1’ Zn_i""l)
for1<i<n. Then, 7 =7][][_, le(M,, ;)2 where A; = dy., — dp,_; + 1 such that
dy, = deg(ri, zn—;) = deg(7s, zn—i) for 0 <i <mn.
Proof. We compute 7 and r step by step in parallel. First, 7y = prem (7o, My, 2
and 71 = rem (rg, My, 2,). By Lemma 2, 7 = lc(M,,)?or;. Next,

7o = prem (¥1, My_1) = le(My,—1)?' 71 — My_1Go (4)

ry =rem (r1, My_1) =r1 — My _1o. (5)

Multiplying Equation 5 by le(M,,_1)?tlc(M,)?° we have
le(My,—1)2 e(M,)20ry = le(My—1) 271 — le(M,_1) 2 e(M,,) 20 My, 1qs.
Subtracting Equation 4 from above, we have
le(M,,)20le(M,,1)*1ry — 7 = My 1 (Ie(My,) 2°le(My, 1) g2 — Ga).-
Since deg(r) and deg(7s) < deg(M,,_1) and M,,_; # 0, we have
le(M,,)20le(Mp—1)?'g2 — G2 = 0

which implies that ¢ = lc(Mn)Aolc(Mn,l)Alqg and 7y = lc(Mn,l)Allg(Mn)ADrg.
Continuing this argument, in the last division we have 7, = H?:o lc(Mn,i)Airn.
By construction, 7 =7, and r = 7,,.

Corollary 2. det(A) = [[\_,lc(M,—;)? det(A) where A; is defined in Theo-
rem 7.
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Proof. Follows directly from Theorem 7.

Theorem 8. Let C, §;, and l; be as defined in Theorem 6. Let p € Py be chosen
randomly such that p{ ]\ ole(M,—;) for 1 <i <n. Then

[(d/21ogy d + d(C + 3271 6;10gy(ln—i+1 + Dil| My—it1]l0)))]
b|Py | '

Prob[p | det(A)] <

Proof. From Corollary 2, det(A) = [} le(M,_;)? det(A) where A; € Z. Since
p 11 le(M;) for 1 < i < n, we have Probp | det(A)] = Prob|p | det(A)]. Thus,

Prob|p | det(A)] = Prob[p | det(A)]

o L(d/2logy d +d(C + 305, bilogy(In—iy1 + D;||My_it1]l)))]
- b| Py | '

Now we can get a bound for ||M(z)|l« where M(z) is the characteristic
polynomial obtained from Algorithm 2.

Theorem 9. Let M (z) be the characteristic polynomial obtained from Algorithm
2. Define Bag = d4/2(2C [T, (bn—i11 + D[ Mn_s11]|o)* )%, where C and I; are
from Theorem 6. Then |M(2)|lco< B.

Proof. To construct M(z), we solve the linear system Aq = —[y%]p, for ¢ € Q¢
(*)
by Cramer’s rule, ¢ = dzte(t‘? ) ) , where A*) is the matrix formed by replacing the

k-th column of A by [y? rem (M,,...,M;)]p, for 1 <k < d. Thus, the largest
entries of A®*) appear in the k-th column. Applying the same justification as
Theorem 8, | det(A®)) |<| det(A®*)) |. Using Theorem 3, we have

N . |
AM2 < @22 T (lnisr + Dill Moyt [l 0)™)?.
=1

Corollary 1

Since M;(z;) € Z[z1,. .., 2] for 1 <i < n, we have M(z) € Z[z] which implies
that det(A) | det(A®). Thus, g, € Z and g, <| det(A®) [< d¥2(2° [}, (ln—it1+
Di| My—it1]lo0) ).

3.3 Zero-Divisor Prime and Evaluation Point

PGCD runs over Ep. Since Ep is not a field, it is possible that PGCD encounters
a zero-divisor while trying to compute a ged in lines 4, 6, 7, 8, 10, and 30. In
this section, we bound the probability that PGCD encounters a zero-divisor.

Definition 6. Let f1, fo € Ly[xo, ..., zk|[z1]. Let p be a prime and B € [0, p) <=1
be an evaluation point such that (p,B) is not an le-bad pair. We call the ordered
pair (p, B) a zero-divisor pair if Algorithm URES, Algorithm 3, returns FAIL

for the inputs ¢, (f1)(B) and ¢,(f2)(B) € Ep[xl}'
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Ezample 8. Let fi = (x+1)w3+2z2 and fo = (x+y+82)w+ zyx be two polyno-
mials in Z[z]/(z?)[x, y][w]. The ordered pair (p, 3) = (7,(0,0)) is a zero-divisor
unit since le(f2, w)(8) mod 7 = z is not invertible over Z7[z]/(22)[z, y][w]. Con-
sequently, Algorithm URES returns FAIL when attempting to make f; monic.

Before bounding the probability of hitting a zero-divisor pair, we must first
define the subresultant polynomial remainder sequence (s.p.r.s.) and establish
its connection to the m.p.r.s.. This requires clarifying the relationships between
prem (f1, f2), rem (f1, f2), and mrem(fy, f2). We present Lemma 3 and Lemma 4
without proof.

Lemma 3. Let fi1, fo € R[z] be non-zero polynomials with lc(f2) and le(fr)
units, and 0 < deg(f2) < deg(f1). Let 6 = deg(f1) — deg(f2) + 1. Then,

(i) rem (f1, f2) = le(fi)mrem(f1, f2) and quo(f1, f2) = le(f2) ~le(f1)mquo(f1, f2).
(i) prem (f1, f2) = lc(fo)’rem (f1, f2) and pquo(fi, f2) = le(fa)°quo(fi, f2)-
(iii) prem (f1, f2) = lc(f2)’lc( f1)mrem(fy, f2) and

pauo(fi, f2) = le(f2)°~He(f1)mrem(f1, fa).

Lemma 4. Let f1, fo € R[z] be non-zero polynomials with lc(f2) a unit. Let
a,b € R be units and § = deg(f1) — deg(f2) + 1. Then,

(i) rem (af1,bfs) = a-rem (f1, f2) and quo(afi,bfs) = ¢quo(fy, f2).
(i) prem (afi,bfs) = ab?-prem (fi, fo) and pquo(afi, bfﬁ = ab’®'pquo(fi, f2).
(#i) mrem(afi,bfs) = mrem(f1, f2) and mquo(afi,bfe) = mquo(fi, f2).

We are interested in a Polynomial Remainder Sequence (p.r.s.) that avoids
the appearance of fractions in the remainders. The Subresultant Polynomial
Remainder Sequence (s.p.r.s.) is such a sequence. We present two ways of defin-
ing the subresultants. The first way, Algorithm 4, uses pseudo-division for uni-
variate polynomials, and the second one, Definition 7, uses determinants. Let
S1,59,853,...,S; be the s.p.r.s. obtained from Algorithm 4. Note that the last
subresultant is Sy = res(f1, f2,y). Theorem 10 presents a connection between
the remainders obtained from Algorithm 3, m.p.r.s. and Algorithm 4, s.p.r.s..

Theorem 10. Let f1, fo € R[z] be non-zero polynomials such that deg(fz) <
deg(f1). Suppose that Algorithm 3 and 4 do not fail for fi and fo. Letri,ra, ... 17
denote the m.p.r.s. from Definition 1 and let Si,...,Sk be the s.p.r.s. from Al-
gorithm 4. Let d; = deg(S;) for 1 <i <k, we have,

Sl =T

SQ =T
Sz = (—le(Sy)) B2ty

Sy = ISR 400(S)) — 14 dea(S))

10(52)(d1 —dg)(do—d3)

- (—IC(Si—l))di72_di71+l’I",L‘ if deg(S;_3) — 1 = deg(S;_2) fori >4

le(S;_o)%i—27di-1

(=1e(S;q))di—2dim1t (g, _g)(di—s—di—a—D(di—a—di_1)
- le(Si_o)(di—3—di—2)(di—2—di_1)

r; if deg(Si—3) — 1 # deg(S;—_2) fori > 4.
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Algorithm 4: s.p.r.s. Algorithm
Input: fi1, f2 € R[y], non-zero polynomials such that deg(f1) > deg(f2) >0
Output: Either the s.p.r.s. generated by fi, f2, S = S1,52,..., Sk, or FAIL
m,n = deg(f1), deg(f2)
51,82 = fi1, fa
if deg(f1) = 0 and deg(f2) = 0 then

L return(Si, S2,1)

if deg(f1) # 0 and deg(f2) = 0 then
L return(Si, Sz, f3°)

c,r=1,n
j,t=m —1,2// i counts the number of subresultants
S = 51,952
while r # 0 do
r = deg(S;)
if r =0 then
L return(S)

14 if ¢ is not invertible in R then
15 L return (FAIL)

16 Sit1 = prem(S;_1, S;)/(—c)i "2
17 if j #r then v

18 L Si = (Ie(S:)?778:) /7"

19 S=5,Sit1

20 jg=r—1

21 ¢ =1c(S;)

22 | i=1+1

© 00N o A W N K-

[ i =
w N = O

23 return(S);

Proof. From Definition 1 and Algorithm 4, we have ry = S; = f; and ro =
Sy = fo. Comparing the iterations of Algorithm 1 with the iterations of Al-
gorithm 4, we prove the theorem. In the first iteration of Algorithm 1, we
have 73 = My — Mgz = f1 — le(f2) ! foqs. From Lemma 4, part (i), we have
rg = rem (f1, f2). In the first iteration of Algorithm 4, we have j = d; — 1,

c =1, and r = deg(f2) = da. We set S3 = pr(’i“;)fiﬁ?) = Fielr)ndl(f{i;ffg. From
dy—do+1

Lemma 2, we have prem (f1, f2) = lc(f2) r3 which implies that S35 =
(—lc(S2))hr—d2Hlps If § £ 7, we set So = le(f2)D %71 f5. In the second iter-
ation of Algorithm 1, we have ry = My — M3qy where My = monic(f2) and
Ms = monic(r3). Apploying part (i) of Lemma 3, we have rem (fa,73) =
le(fa)rg. In the second iteration of Algorithm 4, we have i = 3, j = dy — 1,
r = deg(S3), and ¢ = 1c¢(S2). Two cases are possible for Sy. The first case hap-
pens if in the first iteration r = j. In this case, Sy = % Employing
Lemma 3, part (iii), we have prem (Ss, S3) = lc(S2)lc(S3)% =%+ mrem(S,, S3) =

lc(S2)le(S3)%2 =43+ 1, Thus, Sy = Pr(e_“;)gfiﬁ” = (7(112((232)));22:2“7’4. The sec-

ond case happens when r # j in the first iteration. In this case, we replace
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Sy by lc(Sp)h 92718, Hence, ¢ = lc(S2)% 9. Using Lemma 4, part (ii), we

have prem (lc(Sz)%=92718y, S3) = le(S2)4 =%~ 1prem (Sz, S3). Moreover, using
Lemma 3, part (iii), we have prem (S, S3) = lc(S2)le(S3)92 =41y, Hence,

_ prem (lc(Sp) =218, S3) B le(S2)h =%~ 1prem (Ss, S3)

S (—c)i—ds+2 B (—(1c(Sg)d1—dz))dz—ds+1
B lc(Sp)% =927 1]c(Ss)le(S3) 42— ds 1y, B (—lc(83))dz—ds+1
(—(lc(Sy)d1—dz))d2—da+1 = (1c(So)hi—dz)d2—d T4

Employing the same argument for ¢ > 4, the result will be obtained.

Ezample 9. Let f; = 2425 4 122°2 + 8xt + 2232 + 822 + 22 + 4 and fo =
826 + 8252 +4x* + 8232 + 222 +4 be two polynomials in Lz [z] = Z[2]/(2% - 2)[z].
Table 1 demonstrates the s.p.r.s. obtained from Algorithm 4 and m.p.r.s obtained
from Algorithm 1 for the input polynomials f; and fy. As seen, the coefficients of
the subresultants grow significantly. Particularly, Sg, has the largest coefficient.

Table 1. s.p.r.s.

S.p.I.S. m.p.r.s.

S1 =242% + 12452 + 82T + 2252 + 82 + 2z + 4 1 =242% + 1222 + 82T + 2252 + 82 + 2z + 4
So = 825 + 82°2 + da* + 8232 4 2u2 + 4 ro = 8% 4+ 82°2 + 4a* + 8232 + 222 4 4

S3 = 962°z + 322* + 1762° 2 — 6422 + 40z2 + 64 r3 = —122°2 — 4% — 222%2 + 822 — bzz — 8

Sy = —296962* — 35842°2 + 256022 — 7936x2 — 1024 |ry = —29/18z* — 7/3622> + 5/362> — 31/72z2 — 1/18
S5 = 87654402° 2 — 5480448z% + 16424962 + 3047424|rs = 1605/841x% — 2007/3364zx> + 1203/3364x + 279/8412

Se = 1382809622 — 6320947222 + 601096192 re = —6119/2289800x% + 55941 /457960022 — 66497 /572450
S7 = —47448064xz — 4034396160 r7 = —193670/44521x — 8233650/445212
Sg = 131776013926 rs = 132583327/32761

Corollary 3. Let fi, fo € Ly[z1] with fo # 0 and 0 < deg(f2) < deg(f1). Sup-
pose that Algorithm 3 and Algorithm 4 do not fail for f1 and fo. Let ri,7r9,...,7;
be the m.p.r.s. and Sy,...,Sy be the s.p.r.s.. Then,

(i) I=h )
(i) lc(ri, 1) = w-1c(S;, x1) for a unit u € Ly,.
(i1) deg(r;, z1) = deg(S;, z1)

Proof. (i) Since Algorithm 3 does not fail for f; and fa, le(r;) is invertible for
1 < i < [. Thus, we can alternate natural division with pseudo-division to
compute S; for 1 < i <. According to Theorem 10, since lc(r;) is invertible,
le(S;) is also invertible for 1 < ¢ <. Thus Algorithm 4 must have the same
number of division steps as Algorithm 3 which implies that [ = h.

(ii) From part (i), Algorithm 4 terminates after [ iterations so lc(.S;) is invertible
for 1 < i < [. Thus, in Theorem 10 the fractions are units. Accordingly,
le(r;) = u - 1e(S;) for some unit u € L.

15
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(iii) Since Algorithm 4 terminates after [ iterations, lc(S;) is invertible for 1 <
i < [. Thus, from Theorem 10, we have S; = u;r; for a unit u;. Multiplying
by a unit does not change deg(r;). Hence, deg(r;) = deg(S;).

The second way of defining s.p.r.s. is to use determinants.

Definition 7. Let fi = > a;x} and fo =Y bixl € R[wa, ..., xx)[w1] with
0 <n <m. Let M; ; be the (m+n—2j) x (m+n—2j) matriz determined from
sylv(fi1, fa, 1) by deleting rowsn—j+1 ton, rows m+n—j+1 to m+n, and
columns m+n—2j to n+m except for column m+n—i—j. The coefficients with
negative subscripts are zero(see Definition 7.8 in [10]). The j-th subresultant of
f1 and fo w.r.t. 1 is the polynomial of degree j defined by

S(], f1> fg,l’l) = det(M()j) + det(Mlj)xl + -+ det(ij)l‘Jll.

Since det(M;;) = 0 for i > j, we can present S(j, f1, f2,21) as

_am o1 - ar asj—n x?fjflfl .
oy, Q] " -
S(j7f17f27$1)=det( Am Aj41 m—];jl_l )
by bp—1 - by bgj,m Ty f2
b, by -

Theorem 11. Let Sy,...,S; be the s.p.r.s. obtained from Algorithm 4 for the
input polynomials f1, fo € R[x1] where R = Z[xa,...,x] and deg(fa,21) <
deg(f1,z1). Let 0 < j < deg(f2,z1) and S(J, f1, fo,x1) # 0, then there exists
1 <4 <1 such that S(j, f1, fo, 1) = S;. In particular, S(0, f1, fa,21) = S;.

Proof. A direct consequence of the Subresultant Chain Algorithm, page 129, [5].

Theorem 12. Let f; = Z;:o ajacg and fo = Z;:o bjxg be non-zero polyno-
mials where a;,b; € Rlx1,...,&i—1,Tiy1,...,2] for 0 < j < s < t. Let ¢ :
Rlz1,...,x1] — Rlz1,...,24] be a ring homomorphism, deg(o(f1),x;) = dy
and deg(¢(f2), z;) = da,;-

(1) If di; =t and 0 < dy; < s, then
p(res(f1, fa, i) = dlar)* ives(d(f1), d(f2), 7).
(1) If di; <t and do; = s, then
p(res(f1, fo, ) = (—1)" =MD h(by)! " Mives(p(f1), B(f2), 1)
(i1i) If di; <t and do; < s, then ¢(res(f1, f2)) =0.

Proof. Parts (i) and (ii) follow similarly to Proposition 6 in Chapter 6 of [8]. For
(iii), when dy ; < t and da; < s, the Sylvester matrix ¢(sylv(f1, f2,x;)) contains
at least one column of zeros. Thus, its determinant is zero.
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Theorem 13. Let fi, fo € Ly[za, ..., z][x1]. Let p be a prime and 3 € [0,p)F~*
such that (p,8) is not lc-bad. Let S; be among s.p.r.s over R = Zlxs,. .., 2, 2]
and l; = 1c(S;, x1) € Zlxa, ..., xi][2]. If the ordered pair (p,B) is a zero-divisor
unit, then there exists i > 2 such that p | res(l;(3), M, z).

Proof. By Definition 6, (p, 8) is a zero-divisor pair if Algorithm URES returns
FAIL for the input polynomials ¢,(f1)(8), ¢p(f2)(8) € Lyp[z1]. Let r; be the i-
th remainder computed by URES with ¢ > 2. The algorithm fails iff lc(r;) is
not invertible in L,, for some i. By Theorem 10 and Corollary 3, there exists a
unit w; such that ¢,(S;(8)) = w;r; so ¢p(li(8)) = w; - le(r;). Thus, le(r;) is not
invertible in L, iff ¢, (1;(3)) is not invertible. Therefore, URES fails for ¢, (f1)(5)
and ¢, (f2)(8) iff ged(¢,(1i(B)), dp(M), z) # 1. By Theorem 1, this implies that
res(¢,(1:(B)), ¢p(M), z) = 0. Then, from Theorem 12, p | res(l;(8), M, 2).

Let I; be as defined in Theorem 13. As a consequence of Theorem 13, we have
Prob|(p, 8) is a zero-divisor unit] < Prob[p | res({;(8), M, z)]. To bound Problp |
res(l;(8), M, z)], we first need an upper bound on the integer res(l;(8), M, z). By
Hadamard’s bound, Theorem 3, this requires an upper bound on ||M (z)||s and
Il1:(8)||so- Theorem 9 provides || M (2)||coc < B, so it remains to bound ||1;(8)]] cc-
Assume f1, fo € Z[X, z][z1] where X = @o,...,z. Let R, = res(f1, fo,x1) €
Z[X,z] and R, = res(R,,, M, z) € Z[X]. We summarize some properties of Ry,
in Proposition 1 below, without proof.

Proposition 1. Let f1 = > " a;(X,2)z} and fo = >0 bi(X,2)z} be two

1=

non-zero polynomials in Z[ X, z][x1] such that deg(f1, z), deg(f2,2) < d—1 where
d =deg(M,z). Let

—d, = maxfzg(deg(fhxj)7deg(f2,CUJ'))
— anm = max;o(#ai(X, 2)), by = max_o(#b;(X, 2)), and Ty = max(an, bar)
— H = max(|| fillco, Il f2]l0)

Then we have
(Z) deg(erX) < (n + m)dm,
(ii) deg(Ry,,2) < (n+m)(d—1),
(iii) #Rq, < (n+m)TO™
(iﬂ) and ||Rw1Hoo < (n + m)!H("+m)T](\/T[L+m71).

For 0 < ¢ <, suppose that ||S;||cc < B; and || Rz, ||cc < Bi. Due to coefficient
growth in Algorithm 4, we have B; < Bj. Moreover, [|li]lcc < ||Sillcoc Which
implies that ||/;||cc < B; < Bj. Accordingly,

Prob[p | res(l;(8), M, z)] < Prob[p | res(R,, (8), M, z)]. (6)

From right-hand side of Equation 6, we have

Prob[(p, B) is a zero-divisor pair] < Prob[R,(8) = 0or R,(8) # 0 and p | R.(0)]
< Prob[R.(§) = 0] + Prob[p | R=(5)]. (7)

To bound Prob[R. () = 0], we apply Schwartz-Zippel lemma as follows.

17
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Lemma 5. (Schwartz-Zippel lemma) Let R be an integral domain and let S C R
be finite. Let f € R[x1,xa,...,xE] be a non-zero polynomial with total degree D.
Then the number of roots of f in S™ is at most D|S|¥=1. Hence, if 3 is chosen
at random from S*, then Prob[f(B) = 0] = % .

Lemma 6. Letn, m, and d,, be as defined in Proposition 1. Then Prob[R,(8) =
0] < d(n+m)d,
smme,

Proof. From Proposition 1, we have deg(R,,,z) < D where D = (n+m)(d—1)
and deg(Ry,,X) < (n + m)d,. The Sylvester matrix sylv(R,,,M,z) contains
d rows of the coefficients of R,,, which are polynomials in Z[X], and at most
D rows of the coefficients of M(z), which lie in Z. Therefore, deg(R,,X) <

d(n 4+ m)d,. By the Shwartz-Zippel lemma, Prob[R,(8) = 0] < %.

Lemma 7. Let p be a prime number and B € [0,p)*~1. Then || Ry, (B)||cc < Br,
where Bp = p(”+m)dITﬁn+2m_1)H("+m)(n +m)?2!.
Proof. From Proposition 1, we have deg(R,,,X) < (n + m)dy, #R,, < (n+
m)IT ™ and || Ry, |loe < (n + m)IH@+H) T Therefore,
[ Rz (B)lloo < #Rxlpdeg(R”’X)HRxl oo
< plrtmde p B2l rnm) ((n m))1)2,

(from Lemma 7). Assume that R,(8) # 0, Then,

Lemma 8. Let ||M(2)|lcc < Ban (from Theorem 9), and |Ry, (B)|lec < Br

|(d+ (n+m)(d—1))/21log(dB% + (n+m)(d — 1)B3,)| .

Prob[p | R.(B)] < b|Py |

Proof. The matrix S = sylv(Rs,(8), M, z) contains d rows of coefficients of
R, (=) and deg(R,, (5),z) < d(n + m) rows of coefficients of M(z). Since
IRz, (B)]|co < Br and ||M(z)||co < B, by Hadamard’s bound, we have

d(n+m+1) d(n+m+1) d(n+m)

d
> sh< 11\ Bik+ X B
Jj=1 j=1 j=1

i=1

d(n+m+1)

I

=1
< (dB% + d(n + m)B3,)dntm+1)/2,

| det(S) [=[ R=(P) |

IN

d(n+m+1))/2log, (dB%+d(n+m)B?
Hence, Prob[p | R.(8) |< 14 )/ %IQ]P()]J‘ rtd(ntm)B)]

Let B = dndmde 4 L(d("+m+l))/2lobg“(P,iféer(ner)Bif)J obtained by combining

bounds from Lemma 6 and Lemma 8. From Equation 7, we have

Prob[(p, B) is a zero-divisor pair] < B. (8)
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Definition 8. Let f = 22:1 ai(zk)Yi(Xy) where a; € Lylxy] and Y; is a mono-
mial in X = x1,...,25-1. Define cont(f, Xi) = ged(a,...,ar) € Ly[zi].

Let D = maxt | (deg(f1,z:),deg(fa2,7;)), and let #3 be the number of
points required to interpolate s, ...,z in the gcd. Then, #38 < (D + 1)F~1.
In PGCD, the probability that any gcd computation in lines 4, 6, 7, 8, 10,
or 30 fails is bounded by B as defined in Equation 8. Let X; = x1,...,2;_1
for 2 < i < k. In line 6, to compute cont(f1, X;), < (D + 1)=! — 1 univari-
ate geds are computed. But this is done for < (D + 1)*~% evaluation points for
Tii1,..., Tk, hence a total of < (D+1)¥~1 geds. Thus, computing all cont(f1, X;)
for 2 < i < k requires < (k — 1)(D + 1)k~ ged computations. The same
applies to lines 7, and 30. Line 4 performs < (D + 1)¥=! ged computations.
Lines 8 and 10 each involve one gcd computation, which we can include in
the count for lines 6 and 7. Therefore, Prob[PGCD encounters a zero-divisor] <
3k—1)(D+ 1) 'B+(D+1)"'B=3k(D+1)*'B.

Lines 6, 7, and 30 Line 4

3.4 Unlucky primes

Definition 9. Let fi, fo € Lz[z1,...,x1] be non-zero polynomials, and let g =
ged(f1, f2) be their monic ged. Let hy and hs denote the cofactors of fi and
f2, respectively. Let p be a prime number such that p { lc(f2), p [T, le(M;),
p is not a det-bad prime, and ged(dp(f1), op(f2)) exists. We call p unlucky if
deg(ged(ep(h1), dp(hz)) > 0.

Ezample 10. Let f1 = (zx + y)(bx + 2y + 2) and fo = (zz + y)(5x + 9y + 2)
be polynomials in Lz[z,y] where Lz = Z[z]/(z?> — 2). By inspection, we have
hi =52+ 2y + z, ho = 5z + 9y + 2z, and ged(f1, f2) = 2z +y. Let p = 7. Then
gp = ged(op(hi), op(h2)) = Bz + 2y + z and deg(gp) > 0. Thus, p = 7 is an
unlucky prime.

Theorem 14. Let fi, fo € Lz[x1,...,x1] be non-zero polynomials with cofac-
tors hy and hg, respectively. If p is an unlucky prime, thenp | H?Zl res(hi, ho, ;).

Proof. Let g, = ged(¢p(h1), ¢p(h2)). By Definition 9, if p is unlucky, then
deg(gp) > 0, ie., g, # 1. This implies there exists some variable x; such
that deg(gp, ;) > 0. Treat ¢,(h1) and ¢,(h2) as univariate polynomials in z;

over the ring Lz[x1,...,%i—1,%i+1,.-.,2k]. Then, by Theorem 1, g, # 1 iff
res(¢p,(h1), ¢p(h2),z;) = 0. By Theorem 12, this implies

res(¢p(h1), dp(he), z:) = 0 = ¢p(res(hi, ho,x;)) = 0 = p | res(hi, ha,z;).  (9)
Since Equation 9 holds for some z;, we conclude that p | H?:l res(hy, ho, ;).

According to Theorem 14, the set of unlucky primes is finite.

19
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Theorem 15. Let f; and fo € Lz[r1,...,7x] be non-zero polynomials with co-
factors hy and ha, respectively, and let g = ged(f1, f2). Define Tpy = max(#hy, #ha),
t = max?_; (deg(hy,;)), s = max?_, (deg(ha,z;)), and H = max(||h1]so, ||h2]lco)-
Let p € Py, then

[logy (t+ s)! 4+ (t + s — 1) logy Ths + (t + s) log, H |
b|Py |

Prob[p is unlucky] < k

Proof. From Theorem 14, {p € P, s.t pis unlucky} C {p € Py s.t p | H?Zl res(hi, ha, )}
Thus, for any p € Py,

k k
Prob[p is unlucky] < Problp | H res(hy, ho, z;)] < ZProb[p | res(hy, ho, x;)]
j=1 i=1

From Proposition 1 (iv), ||[res(hi, b2, 7i)||oc < (¢t + s)!TJ(&JFS_l)HHS for each
1 <4 < k. Since p € Py, we have log, p < b. Therefore, for each 1 <1 <k,

log,, (t+s)IT{ETo ™D Hite
|' log, p
- | Py |
[logs (t+ 5)! + (t+ 5 — 1) logy Ty + (t + 5) log, H |
b|Py | .

Prob|p | res(hy, ha, z;)]

A

IN

Summing over all k variables gives the final bound:

logy (t + )l + (t+ s — 1)logy Tar + (t + s) logy H|
bl Py |

Prob[p is unlucky] < k L

3.5 Unlucky evaluation points

Definition 10. Let fi, fo € Ly[z1,...,xx) with 0 < deg(f2,zx) < deg(f1,xk),
and suppose the monic g = ged(f1, f2) exists. Let hy and ho denote the cofactors
of f1 and fy. Let By € [0,p) be chosen randomly such that le(f2)(Bx) # 0, and
95, = ged(f1(zx = Br), fa(xk = Bi)) exists. We call By, an unlucky evaluation
point if deg(ged(hy(xr = Br), he(zr = Br))) > 0.

Ezample 11. Let g = (y+22)z, f1 = g-(x+2+4y+8) and fo = g-(z+2y+2+10)
be polynomials in Lj;[x,y] listed in the the lexicographic order with = > y
where Lj; = Z11(2]/(2% 4+ 8). Then ged(f1, f2) = g. Choosing y = 1, we have
ged(hi(y=1),ha(y=1)) =2+ z+ 1 so y = 1 is an unlucky evaluation point.

Theorem 16. Let fi and fo € Ly[x1,...,x1] be non-zero polynomials, and
let monic g = ged(f1, fa) exists. Let hy and hg be the cofactors of fi and
fo. If B € [0,p) is an unlucky evaluation point, then x; = By is a root of

Hfz_ll res(hi, ho, ;).



Failure Probability of Computing monic ged over Q(aa, .. ., an)

Proof. Let gg, = ged(hi(zy = Br), ha(zr = Br)). If Br € [0,p) is unlucky,
then deg(gs,) > 0, ie., gg, # 1. Hence, there exists some 1 < ¢ < k —1
such that deg(gg,,x:) > 0. Treat hy(xr = Bi) and ha(rr = Pi) as univariate
polynomials in z;, over the ring Ly[z1,...,%;—1,Zit1,...,Tk_1]. Since gg, # 1,
Theorem 1 implies res(hi(xr = Bi), ho(zr = Pi),z;) = 0. By Theorem 12,
res(hy, ho, z;)(zr = Br) =0, i.e., xp = B is a root of Hf;ll res(hy, ho, ;).

Theorem 17. Let f1 and fo € Ly[z1,. .., 7x] with0 < deg(fa, z) < deg(f1, zk)-

Let monic g = ged(f1, f2) exist and hy and hs be the cofactors of fi and fs,
respectively. Define R; = res(hy,ha,x;) and D, = maxf:_f(deg(Ri,xk)). Let
Bk € [0,p). Then Problzy = B is an unlucky evaluation point] < %.

Proof. Since, in general, L, is not a field, the number of roots of R; may exceed
deg(R;,zx). To avoid this, assume R; € Zp[z][x1,...,Ti—1, Tit1,- -, Th—1][Tk).
By Theorem 16, if x; = B is an unlucky evaluation point, then Hi:ll Ri(xy, =
Br) = 0 so Problxy, = B is an unlucky evaluation point] < Zkfll Prob[R;(xk

Bk) z 0]. For 1 < i < k, we have Prob[R;(z) = ) = 0] < %&’;;i) <

Ao (B Summing over all k£ — 1 variables yields the result.

A

To summarize, let #p be the number of primes used in MGCD, and #§ be
the number of evaluation points used in PGCD. Then,

lh+ Di(k—1)b+1log, T| + nm

Prob[MGCD Fails] < #p(#8( by ] (10)
b
Prob[(p,8) is lc-bad](Theorem 2)
2 2
n 3k(d(n +m)ds n [(d(n+m+1))/2log(dB% + d(n + m)Bi;)| ) (11)
5| Py |
Prob[PGCD encounters a zero-divisor]|(Equation 8)
(k= 1)D,
+ _ 12
p—dea(fa ) : -
—_—
Prob[z), = B is an unlucky evaluation point](Theorem 17)
ld/2logy d + d(C + 37 i logy(ln—iv1 + Di|| Mn—it1]le)))
+ (13)
b| Py |
Prob[p is det-bad](Theorem 8)
k|logy (t+ s)! 4+ (t + s — 1) logy Tr + (t + s) log, H |
- -~ ) (14)

Prob[p is an unlucky prime](Theorem 15)

4 Conclusion

We have analyzed all failure cases of the MGCD and PGCD algorithms of Ansari
and Monagan from [2] and have determined that the numerators in (10), (11),
(12), (13) and (14) of the failure probabilities are all polynomial in the sizes of the
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input and output, namely, d the degree of Q(a,...,ay), the size of the integer
coefficients in 7y, Mo, . . ., Min, f1, fo, g, the degrees of fi, fo in @1, o, ..., ), the
number of evaluation points used, the number of primes used, and the number
of terms of f1, fo, 9.
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Algorithm 5: MGCD

o Gtk W

~

10

11

12
13

14
15
16

17
18

19
20
21
22

23

24

25
26
27

28

29
30

Input: fi, fo € L[z1,...,zx] where L = Q[z1,...,2a]/{Mi(21),..., Mn(zn))
Output: ged(f1, f2)

M:=1

fi= fl and fy := fz // Clear fractions

while true do

Choose a new random prime p that is not lc-bad.
Choose C1,...,Cn_1 € [1,p) at random and set vy =21 + > ., Ci_12;
Call Algorithm 2 with inputs [¢pp(M1), ..., ¢p(My)], Zp and ¢p(7) to
compute M (z), A, and A"
if Algorithm 2 fails then
L Go back to step 4

// Apply Algorithm 6 to get the monic gcd over L,
Gp = PGCD(¢p+(¢p(f1)), b (dp(f2))) € Lplza, ..., k]
if Gp,= FAIL then
// PGCD has encountered a zero-divisor.
L Go back to step 4.

if deg(Gp) =0 then
L return(1)

// Convert G, € L, to its corresponding polynomial over L,

Gp = ¢’;1(GP)

Im :=1m(G)p) w.r.t lexicographic order with z1 > z2... > =i

if M =1 orlm <least // First iteration or all the previous
primes were unlucky.

then

L G,least, M = Gp,lm,p

else

if Im = least then
Using CRT, compute G' =G mod M and G' =G, mod p
set G=G and M =M -p

else if Im > least then

// p is an unlucky prime
Go back to step 4

H := Rational Number Reconstruction of G mod M

if H # FAIL then

Choose a new prime q and b, ..., b, € Z,; at random such that
1C(I’I)(.’]317 bz, ey bk) 75 0

A, B, C:= f1(1'1, bz, ey bk), fQ(CL‘1, b2, ey bk), H(l‘1, b2, ey bk)

// A,B,C are polynomials in Lg[z1]

if C'| A and C' | B then
L return(H)
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Algorithm 6: PGCD

© 0N s W N

o e R R
B W N H O

15
16

17
18
19
20

21

22
23

24

25

26
27
28

29

30

31
32
33
34

Input: fi, f2 € Lp[z1,. .., Tk

Output: ng.(fl7 f2) S Lp[.’lh, RN a:k] or FAIL

Xk = [$1, e ,xk_1]
prod :=1
if k=1 then
L H := ged(fu, f2) € Ly[z1]
return(H)
c1 = cont(f1, Xk) € Ly[xi]. if 1 = FAIL then return(FAIL)
co = cont(f2, Xk) € Ep[:ck}. if co = FAIL then return(FAIL)
c:= ged(ci, c2) € Lp[zy]. if ¢ = FAIL return(FAIL)
fi.fa = fifer, fo/ca

I = ged(le(f1, Xk), le(f2, Xk)) € Lp[zy]. if I' = FAIL return(FAIL)
while true do
Take a new random evaluation point, j € Z,, which is not lc-bad.
F1J = fl(l'l, ey Lp—1, T = z) and ng = fg(l'l, ey =1, T = j)
Gj = PGCD(F1J.,F2]. ,p) c Lp[.’L‘1, ey Z'k71]
// 1¢(G;) =1 in lex order with =1 > T2 > ... > Tp_1
if G;j = FAIL then

L return(FAIL)

Im :=1m(G;, Xk) // in lex order with x1 > 2 > ... > Tp_1
Iy :=TI(j) €Zy
gj =1y -Gj; // Solve the leading coefficient problem
if prod =1 or Ilm < least then
// First iteration or all previous evaluation points were
unlucky.
least, H, prod :=1Im, g;, xr — j
else
if Im > least then

// j is an unlucky evaluation point
| Go back to step 12.

else if Im = least then

// Interpolate xj in the gcd H incrementally
V= prod(zx = j) "' - (9; — H(zk = 7))

H:=H+ YV, prod

prod := prod - (xx — j)

if deg(prod, zr) > deg(H, xr) + 1 then
// Make H primitive in Lyp[z][z1,...,%k—1].
cs = cont(H, Xk). if cs = FAIL then return(FAIL) else H := H/cs.
// Test if H is the gcd of f; and fo.
Choose ba, ..., by € Z, at random such that 1c(H)(x1,b2,...,bk) 0
A, B7 C:= fl(wl,bz, e ,bk),fz(xl,bz, e ,bk),H(wl,bz, ce ,bk)
if C| A and C'| B then
L return(c- H)
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