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Research Proposal

Overview and Objectives. My research area is Computer Algebra. Three important computa-
tional problems in Computer Algebra are

• computing multivariate polynomial greatest common divisors (GCDs),

• multiplying and factoring multivariate polynomials, and

• solving systems of polynomial equations.

They are important because the overall speed and capability of a Computer Algebra System like
Maple critically depends on them. Algorithms for these problems depend on the coefficients of the
polynomials. In practice, integer coefficients are the most common. Algebraic numbers e.g.

√
3,

and algebraic functions, e.g.
√

1− t2, also occur frequently. My long term objectives are to

• design and implement efficient algorithms for these and related problems,

• design and implement parallel algorithms for these problems for multi-core computers,

• develop and apply sparse interpolation tools and black box algorithms, and

• integrate the software into Maple where it gets used, automatically, by scientists and engineers.

A challenge in Computer Algebra is getting implementations of good algorithms integrated well
into Computer Algebra Systems so they can be easily applied to real problems. Another challenge is
how to utilize our multi-core computers with their vector processors. We need to think beyond just
designing new algorithms if we want to have an impact outside the Computer Algebra community.

I propose the following four short-term objectives. Each involves algorithm design, implemen-
tation, analysis (complexity and failure probability), and application. Each is suitable for graduate
student training and research. Objectives 3 and 4 are accessible to undergraduate students.

1 Black box multivariate polynomial GCD and polynomial factorization algorithms.

2 Computing GCDs and factoring multivariate polynomials with algebraic function coefficients.

3 Factoring multilinear polynomials over GF(2).

4 To build a library of tools for black boxes and sparse interpolation.

A central theme of my research program is sparsity and the black box representation. Let me
explain what these are and why they are important.

The sparse representation of a polynomial f =
∑t

i=1 aiMi(x1, . . . , xn) is a list of t non-zero
coefficients ai in a ring R and exponent vectors for the monomials Mi. We say a polynomial of
degree d in n variables is sparse if the number of terms t is much smaller than

(
n+d
d

)
, the maximum

possible. We want algorithms whose complexity is polynomial in n, d, t and not
(
n+d
d

)
. The main

reason this is important is that in most applications, polynomials in many variables are sparse.
The black box representation for f is a computer program B that evaluates f at a point

α ∈ Rn, that is, B(α) computes f(α). We seek algorithms which minimize the number of probes
(evaluations) of the black box. The main reason to consider the black box representation is it can
be exponentially more compact than the sparse representation.

Since the factors of a polynomial f are usually much smaller in size than f , computing the
factors of a polynomial given by a black box is especially important. Consider the polynomial

f = (x1 − x2)(x1 − x3)(x1 − x4)× · · · × (x1 − xn).
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This factorization has n−1 factors of size O(1) bits, yet if we interpolate f in the sparse (expanded)
representation it has 2n−1 terms of size O(n) bits! Computing such a factorization from a black box
has obvious practical value.

Literature Review. In Computer Algebra, the black box representation was first investigated
by Kaltofen and Trager [22] in 1990 who gave the first algorithms for factoring polynomials and
computing GCDs of polynomials which are represented by black boxes. In [8, 9] Kaltofen and
Diaz improved the GCD algorithm and developed a C++ implementation called FOXBOX. In [35]
Rubinfeld and Zippel give a black box factorization algorithm for Z[x1, . . . , xn] that factors many
univariate polynomials in Z[x1]. In [6] Chen and I give a new black box factorization algorithm that
does a lot fewer probes to the black box than Rubinfeld and Zippel; it needs only one univariate
factorization in Z[x1]. Very little other work has been done and, as far as I know, the black box
representation is not used in any Computer Algebra System. One reason for this is the lack of
infrastructure needed to implement black box algorithms. Objective 4 addresses this.

Users of black box algorithms will need to recover the sparse representation of f from it’s black
box representation, that is, interpolate f . There is a large body of literature for sparse polynomial
interpolation. Early algorithms for polynomials with integer coefficients include Zippel [39] and Ben-
Or and Tiwari [3] whose bit complexity is polynomial in n, d, t and log h where h = maxt

i=1 |ai|. In
[12], Garg and Schost initiated a different approach that is polynomial in log d. This line of research
culminated in 2022 with Giorgi et. al. [14] which is softly linear in t(n log d + log h), that is, the
bitsize of f .

For objective 2 I need to interpolate rational functions. A first sparse rational function interpola-
tion algorithm was given by Kaltofen and Trager in [22]. In [26], De Kleine, Wittkopf and I gave an
algorithm based on Zippel’s sparse polynomial interpolation. The number of function evaluations
needed was subsequently reduced by Kaltofen and Yang [23] and further reduced by Cuyt and Lee
[7]. In [18], van der Hoeven and Lecerf present a variation of Cuyt and Lee. In [21], Jinadu and
I modified Cuyt and Lee to use a Kronecker substitution and applied our method to interpolate
Dixon resultants which we used to solve parametric polynomial systems from [24, 25, 27, 28, 29, 37].

1: Black box multivariate polynomial GCD and factorization algorithms [MSc1, PhD1]

Recent Progress: To factor a polynomial f in Z[x1, ..., xn] given by a black box, instead of inter-
polating f with sparse interpolation then factoring f , the technology I have developed with my
PhD student T. Chen in [4, 6] recovers the variables x2, . . . , xn in the factors of f , in the sparse
representation, one at a time, from bivariate images obtained using my bivariate Hensel lifting from
[32, 33]. We are using our software to compute the factors of determinants of structured matrices
of polynomials.

One advantage of our approach is that we know exactly how many bivariate images (hence black
box probes) we need to recover each variable which simplifies parallelization. I would like to do
a parallel implementation of the algorithm for multi-core computers. A second advantage is we
can easily omit computation of the content(f, x1). An important application of this advantage is
computing Dixon resultants. Let me describe this application.

Let f1, ..., fn be polynomials in n variables x1, ..., xn and m parameters y1, ..., ym with integer
coefficients. The computational problem is to eliminate x2, x3, . . . , xn from the parametric polyno-
mial system {f1 = 0, . . . , fn = 0} to obtain a polynomial in x1 only which we then solve for x1.
Three general approaches to do this are Groebner bases, Triangular sets and resultants.

In [27, 28, 29] Lewis presents many real problems where Groebner bases and Triangular sets fail.
The approach I tried with Jinadu in [21] was to compute the Dixon resultant R = det(D) where
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D is the Dixon matrix, a matrix of polynomials in x1, y1, . . . , ym. See Kapur et. al. [24, 25]. Let
C = content(R, x1) and M = R/C. Often C is large and M is much smaller than R. We modified
Cuyt and Lee’s sparse rational function interpolation to interpolate S, the square-free part of M ,
from monic images of R in x1. Thus to solve R = 0 for x1 we solve S = 0 for x1. The advantage?
Often S is much smaller than R in size. On one of Lewis’ problems S is over 10,000 times smaller
than R. We were able to solve all the application problems in Lewis’ papers.

I want to try a different approach to handle larger problems. The idea is to try to compute
the factors of R = det(D) in x1 only. Methodology: Treat R as a black box. Step 1: pick integers
b1, . . . , bm randomly from a large set and interpolate R(x1, b1, . . . , bm) in Z[x1]. Step 2: factor
R(x1, b1, . . . , bm) and use our new Hensel lifting algorithm to recover y1, . . . , ym for the factors in
x1 only, thus avoiding the content C. The Hensel lifting increases the cost by a factor of m but we
get to lift the factors of S which, depending on the application, can be much smaller than S, and
we avoid rational function interpolation which saves a factor of deg(S, x1). An alternative approach
would be to use Groebner bases to compute the many images of R(x1, y1, . . . , ym) modulo primes
needed in Steps 1 and 2. I will try both approaches.

With my PhD student G. Paluck we have just started designing black-box GCD algorithms.
Methodology: Let A,B ∈ Z[x1, . . . , xn] be given by black boxes. There are many approaches to
compute G = gcd(A,B) using our black box Hensel lifting technology. One is to Hensel lift a
full factorization of the GCD G(x1, a2, ..., an) in Z[x1]. To avoid this factorization, we can instead
lift the “cheap to compute” square-free factorization of G modulo a prime p. Let C = A/G and
D = B/G be the cofactors. A third approach, useful if we want also to also compute C and/or D,
would be to lift the factorization of A = GC and/or B = GD.

2: Computing GCDs and factoring polynomials over function fields [MSc2, PhD2]

Let α1, . . . , αn be algebraic numbers and F = Q(α1, . . . , αn) be an algebraic number field of degree
d over Q. For GCD computation in F [x], for n = 1, Encarnacion [11] developed a modular
algorithm that uses Chinese remaindering and rational number reconstruction to recover the rational
coefficients in the monic gcd. In [16], van Hoeij and I generalized Encarnacion’s method to n > 1.
For large d, Li, Moreno Maza and Schost designed fast arithmetic for F in [30].

Recent Progress: In [1, 2] my PhD student M. Ansari and I designed new modular GCD and
resultant algorithms for polynomials in A,B ∈ F [x1, . . . , xk] which use dense interpolation for
x2, . . . , xk. We employ a primitive element γ, computed modulo a prime p, to map a computation
over F mod p into Q(γ) mod p to speed up arithmetic in F mod p. We are trying to complete
a failure probability analysis which is difficult. As an application of our work we are trying to
factor four polynomials in F [x] given to us by Grasl [15]. The four problems are for n = 4, 7, 6, 4,
d = 136, 128, 624, 744 and deg(f, x) = 136, 1024, 624, 744, respectively.

For the algebraic function field case, Dr. J. Gerhard of Maplesoft has asked me for help with
GCD and factorization problems from users which do not terminate in Maple. Let T = t1, . . . , tm
be parameters and α1(T ), . . . , αn(T ) be algebraic functions and L = Q(α1(T ), . . . , αn(T )) be an
algebraic function field over Q(T ).

For GCD computation in L[x1, . . . , xk], in previous work [17], van Hoeij and I tried evaluation
and dense rational function interpolation for the parameters and variables. Methodology: Two
possible sparse approaches are (i) to compute monic univariate images of the gcd in x1 and use
sparse polynomial interpolation to recover x2, . . . , xk then sparse rational function interpolation to
recover the parameters t1, . . . , tm in the monic gcd, and (ii) to compute monic bivariate images of
the gcd in x1, xj and x1, tj and recover x2, . . . , xn, t1, . . . , tm sequentially using our sparse bivariate
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Hensel lifting from objective 1. This will be complicated to implement so I think it wise to first
design a data structure for L[x1, . . . , xn] and code arithmetic and support tools to facilitate a clean
implementation. To do a failure probability analysis we will need degree bounds and coefficient
bounds. We will try to express all quantities as determinants of matrices of polynomials.

For the factorization problem, Maple currently uses Trager’s algorithm from [38]. For f ∈ L[x1],
Trager’s algorithm picks a random shift s ∈ Zn, computes the norm h of f(x1 = x1 +

∑n
i=1 siαi)

using a sequence of resultants to obtain h a polynomial in Q(T )[x], then factors h over Q(T ) to get
h =

∏l
i=1 hi. The factors of f are then obtained from gcd(hi, f). The problem is that the norm h

is, in general, a factor of dm+2 times larger than f .
Methodology: I propose to first try a black box solution, which, in principle, can avoid computing

h explicitly. To compute h implicitly we will need to design a black box resultant algorithm. Then
we would apply a black factorization algorithm to factor h. The final step, computing gcd(hi, f), is
an application of our black box GCD from objective 1. It is not clear that this will be fast enough
in practice because we would be composing black box resultant, factorization and GCD algorithms
which multiplies costs.

3: Factoring multilinear polynomials over GF(2). [PhD3]

A polynomial f is multilinear if it is degree 1 in every variable. For example f = (x1+x2)(x3x4+1) is
multilinear. This restriction means the factors must have distinct variables. My reason for studying
this problem is firstly the application to boolean circuit optimization [10], and secondly, to try to
pin down the theoretical complexity of this very restricted factorization problem.

Recent Progress: In 2010 Shpilka and Volkovich [36] showed that factoring polynomials whose
factors have distinct variables is polynomial time equivalent to identity testing. In 2018 Emelyanov
and Ponomaryov [10] gave a deterministic algorithm based on such an identity test for factoring
a multilinear polynomial f in GF (2)[x1, . . . , xn] (a boolean polynomial) which has bit complexity
O(n2t2 log t) where t is the number of terms of f . Note the bitsize of f is O(nt).

My first goal is to remove the quadratic dependence on t. I can see how to get a Monte Carlo
algorithm for the sparse representation with algebraic complexity O(n2t) multiplications in GF (2k)
for suitable k. This should be faster in practice if multiplication in GF (2k) is efficient.

Emelyanov and Ponomaryov gave a second algorithm for the sparse representation based on GCD
computation. For f = ax1 + b where a, b ∈ GF (2)[x2, . . . , xn], a 6= 0, they compute g = gcd(a, b)
which gives the factorization f = gh where h = f/g is irreducible. Emelyanov and Ponomaryov
assume Zippel’s probabilistic algorithm is used for the GCD and state the complexity of Zippel’s
algorithm at O(t3) arithmetic operations in GF (2k) based on the work of de Kleine, Wittkopf and
myself [26]. I will instead try recursive content computations to compute g and its factorization.

If f has m factors, each with 2 terms in distinct variables, then f has t = 2m terms in expanded
form which limits the size of the problem which can be tackled in the sparse representation. I
propose to design a black box factoring algorithm to avoid the 2m size.

Methodology: Let p = f/g be the primitive part of f in x1, which is irreducible. A first approach
would be to interpolate p using a black box GCD algorithm from objective 1 and then construct a
black box for g = f/p and factor it recursively.

A black box algorithm must be able to choose evaluation points from a large set but for boolean
polynomials, we have only two values, 0 and 1. So we must choose values from a field extension,
GF (2k), for suitably large k. This poses an unavoidable software design problem; how to allow the
code for the black box to execute over a field extension. If the black box is a Maple procedure
(Maple procedures are white boxes) I will try evaluating the code using an interpreter.
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4: A black box library. [MSc3, PhD3, PDF1]

I propose to build a library of tools for black box algorithm development so that researchers who
want to implement black box algorithms don’t have to start from scratch. Part of the motivation
is that Computer Algebra Systems have very little support for black box algorithms. Let f be a
polynomial represented by a black box. A minimal list of tools would include

1. a test for f = c for a constant c,

2. computation of deg(f) and deg(f, xi),

3. a black box factorization algorithm for Q[x1, . . . , xn],

4. a black box factorization algorithm for Fq[x1, . . . , xn],

5. sparse polynomial interpolation of a black box

6. sparse rational function interpolation of a black box

7. a black box for ∂f/∂xi and for ∇f the gradient of f

Methodology: For flexibility and ease of use, I will first try Maple procedures as the representation
for black boxes. For 3, for efficiency, the black box model needs to allow us to compute f modulo
a prime p. For 4, for randomization, the black box model needs to allow us to evaluate f over an
extension field. For 5 I propose to use a Kronecker substitution plus Ben-Or/Tiwari interpolation
as I did in [19] and [21]. For 6 I propose to modify Kaltofen and Yang’s method from [23] to use a
random dilation (see Giesbrecht and Roche [13]) so that it does not require randomized evaluation
points. Although Kaltofen and Yang is slightly less efficient than Cuyt and Lee, it is much easier
to parallelize and analyse.

A challenge is the gradient operation ∇f : Rn → Rn which cannot be done efficiently in the
black box model. However, since Maple procedures are white boxes, we could use Automatic
Differentiation (see Corliss et. al. [5]) to compute ∇f . In the white box representation, if f does
m arithmetic operations, ∇f can be computed in O(m + n) arithmetic operations whereas the
black box representation needs O(mn) arithmetic operations. As the author of Maple’s toolbox for
Automatic Differentiation [31], I have relevant expertise in this.

Another challenge is how the user creates efficient code for the black box because the speed of
a black box algorithm depends on how fast we can evaluate the black box. For example, if B is a
Maple procedure that constructs a matrix then computes its determinant modulo a prime p, that
is, B : (Zn, p) → Zp, we may need to translate B into C/C++ code and compile it for speed. The
current Maple C compiler has limitations. One is that the prime p < 231.5.

Overall Impact. The primary goal of my research program is to be able to solve large instances
of problems that are of central importance in Computer Algebra, in a reasonable time, and to see
high performance implementations of the new algorithms installed in a Computer Algebra System
like Maple so that scientists and engineers can easily access them. I also believe objectives 1,2,3,
and 4 offer HQP training opportunities in algebraic computation of the highest quality. As well as
the HQP trained, the benefit to Canada will be new capabilities of Maple, a Canadian product.

Objective 1 will make the fastest black box factorizer even faster by parallelizing it. That
combined with the new approach to computing the factors of the Dixon resultant will increase
the range of parametric polynomial systems that can be solved. Objective 2, if successful, could
dramatically increase the size of computations involving algebraic functions that can be tackled.
Objective 4, if easy to use, will stimulate the development and application of black box tools to
other areas of Science and Engineering.
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