MATH 895, Assignment 3, Summer 2011

Instructor: Michael Monagan

Please hand in the assignment by 9:30am Wednesday June 22nd. Late Penalty -20% off for up to two days late. Zero after that.

Question 1: Minimal polynomials.

Let α be an algebraic number with minimal polynomial $m(z) \in \mathbb{Q}[z]$. Prove that m(z) is irreducible over \mathbb{Q} .

Using linear algebra, find the minimal polynomial $m(x) \in \mathbb{Q}[x]$ for

$$\alpha = 1 + \sqrt{2} + \sqrt{3}.$$

Question 2: Norms.

Prove that the norm is multiplicative, i.e., N(ab) = N(a)N(b) in $\mathbb{Q}[\alpha]$ by showing that for A, B, C non-zero in $\mathbb{Q}[z]$,

$$res(A, BC) = res(A, B) res(A, C).$$

Question 3: Computing with algebraic numbers.

Let ω be a primitive 4th root of unity in \mathbb{C} . Determine the minimal polynomial m(z) for ω and Compute ω^{-1} in $\mathbb{Q}[z]/m(z)$ using the extended Euclidean algorithm and use this to solve the following linear system for x and y.

{
$$\omega x + \omega y = 1, \ \omega^3 x + \omega^4 y = -1$$
 }

Now represent ω in Maple using the RootOf representation for algebraic numbers and solve the linear system using the solve command.

Question 4: Trager's algorithm

Let ω be a primitive 4th root of unity.

Using Trager's algorithm, factor $f(x) = x^5 - 1$ over $\mathbb{Q}(\omega)$.

Use Maple's RootOf notation for representing elements of $\mathbb{Q}(\omega)$ and the gcd command.

Study the proof of Theorem 8.16 and write out your own version of the proof.

Question 5: Square-free norms.

To factor f(x) over $\mathbb{Q}(\alpha)$, Trager's algorithm chooses $s \in \mathbb{Q}$ such that the norm $N(f(x-s\alpha))$ is square-free. Theorem 8.18 states that only finitely many s do not satisfy this requirement. Give a characterization for which s satisfy this requirement in terms of resultants. Hint: n(x) is square-free iff gcd(n(x), n'(x)) = 1 where $n(x) = N(f(x - s\alpha))$.

Using your characterization, for $\alpha = \sqrt{2}$ and $f(x) = x^2 - 2$, find all $s \in \mathbb{Q}$ for which the n(x) is not square-free. Repeat this for the factorization problem in question 4.