
Journal of Symbolic Computation 38 (2004) 1303–1326

www.elsevier.com/locate/jsc

Telescoping in the context of symbolic summation
in Maple

S.A. Abramova, J.J. Caretteb, K.O. Geddesc, H.Q. Lec,∗
aDorodnicyn Computing Centre, Russian Academy of Science, Vavilova st. 40, 119991, Moscow, GSP-1, Russia

bComputing and Software, McMaster University, Hamilton, L8S 4L8, Canada
cSymbolic Computation Group, School of Computer Science, University of Waterloo, Waterloo,

N2L 3G1, Canada

Received 30 December 2002; accepted 14 August 2003

Available online 27 April 2004

Abstract

This paper is an exposition of different methods for computing closed forms of definite sums. The
focus is on recently-developed results on computing closed forms of definite sums of hypergeometric
terms. A design and an implementation of a software package which incorporates these methods into
the computer algebra system Maple are described in detail.
© 2004 Elsevier Ltd. All rights reserved.

Keywords:Symbolic summation; Software design; Telescoping sums; Maple; Zeilberger’s algorithm; Closed
form; Hypergeometric terms

1. Introduction

In order to compute closed forms of definite sums, one can apply one of at least
three methods: theclassical telescoping method, the creative telescoping method, or
the conversion method. The classical telescoping method is based on the computation
of an anti-difference of the input summandT , or on the construction of an additive
decomposition ofT ; the conversion method uses hypergeometric series as an intermediate
representation.

The creative telescoping method is principally based on Zeilberger’s algorithm
(Zeilberger, 1991). This method has proven itself to be a very useful tool for com-
puting closed forms of definite sums of hypergeometric terms which occur in many

∗ Corresponding author.
E-mail addresses:abramov@ccas.ru (S.A. Abramov), carette@mcmaster.ca (J.J. Carette),

kogeddes@scg.math.uwaterloo.ca (K.O. Geddes), hqle@scg.math.uwaterloo.ca (H.Q. Le).

0747-7171/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2003.08.010

http://www.elsevier.com/locate/jsc

1304 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

parts of mathematics including combinatorics, probability, number theory, and analysis
of algorithms. Regardless of the extensive work on, or related to Zeilberger’s algorithm
(Wilf and Zeilberger, 1992; Chyzak and Salvy, 1998; Chyzak, 2000), there still exist many
interesting problems arising from the algorithm, and a number of them were not considered
or solved in the “classics”.

In addition to providing an outline of the three methods, this paper also includes a
summary of some recent results byAbramov(2002a), Abramov(2002b), Abramov and Le
(2002) and Le (2001) which supply a theoretical foundation as well as algorithms to
overcome, or at least alleviate, two key problems of Zeilberger’s algorithm: (a) the
limitations in the domain of applicability of Zeilberger’s algorithm, and (b) the efficiency of
the algorithm. The main focus of the paper, however, is on the design of a software package
which provides various tools, based on the above-mentioned three methods, for computing
closed forms of indefinite and definite sums. For definite sums of hypergeometric
terms, the design starts with the moduleTelescopers for computing the minimal
Z-pairs of hypergeometric terms (Abramov et al., 2002a). This module forms a component
of the moduleHypergeometric (Abramov et al., 2001), a toolbox for working with
hypergeometric terms in general, and for computing closed forms of indefinite and definite
sums of hypergeometric terms in particular. The moduleHypergeometric, together
with the modulesIndefiniteSum and DefiniteSum, form the main components of
the moduleSumTools (Abramov et al., 2002b), a symbolic summation toolbox in Maple
(Monagan et al., 2002).

The organization of the paper is as follows. We discuss inSection 2the classical
telescoping method, and show the design of the moduleIndefiniteSum for computing
the anti-differences of various classes of summands. The first part ofSection 3 is
essentially the work described inAbramov et al.(2002a). It is devoted to the design of the
combination of algorithms for computing the minimalZ-pairs of hypergeometric terms. An
implementation based on this design results in the moduleTelescopers. A comparison
between this module and other related software packages is also given. The functions in
the moduleTelescopers form a component of the moduleHypergeometricwhich is the
focus of the second part ofSection 3. In Section 4we discuss the conversion method, and
show the design of the moduleDefiniteSum for finding closed forms of definite sums.
The last section,Section 5, provides the design and functional descriptions of the package
SumTools. This package encompasses all the modules described in previous sections.

This paper provides a substantial extension of a previous version of this paper
as presented at ICMS 2002 (Abramov et al., 2002a). First, the paper puts that work
in the context of a specific method for computing closed forms of definite sums of
hypergeometric terms, namely the creative telescoping method. Secondly, the paper
includes descriptions of the design and implementation of two well-known methods: the
classical telescoping method, and the conversion method, as well as shows the combination
of the three methods. The end result is the software packageSumTools, a symbolic
summation toolbox in Maple.

Symbolic summation is a vast research area in computer algebra. It is necessary
to point out that our software package currently does not include implementation of
all known algorithms. Various software packages on summation have been developed
(mainly in Maple and Mathematica). They include the work on summation in difference

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1305

fields (Schneider, 2001), multivariate hypergeometric summation (Wegschaider, 1997),
q-hypergeometric summation (Böing and Koepf, 1999; Koornwinder, 1993; Riese,
1995), bibasic, multibasic and mixed hypergeometric summation (Riese, 1997;
Bauer and Petkovˇsek, 1999) and tools for manipulation of (q-)hypergeometric series
(Gauthier, 1999; Krattenthaler, 1995).

Throughout the paper,K is a field of characteristic zero,C is the field of complex
numbers,Q is the field of rational numbers,Z andN denote the set of integers and non-
negative integers, respectively. The symbolsEn, Ek denote the shift operators with respect
to n andk, respectively defined byEnT(n, k) = T(n+1, k), andEkT(n, k) = T(n, k+1).
Note that both univariate and bivariate functions will be considered.

2. Classical telescoping

For a given functionT(k) over K, the problem ofindefinite summationasks if
there exists a functionG(k) over K, or over some suitable extension ofK, such that
(Ek − 1)G = T , and to compute such aG, provided that it exists. The computed function
G is called ananti-differenceof T . Note thatG is unique up to any functionC(k) such that
C(k + 1) = C(k).

Consider the definite sum

b∑
k=a

T(k), a ≤ b, b − a ∈ N. (1)

If an anti-differenceG(k) of the summandT(k) can be computed, then by writing out (1)
in full, we have

b∑
k=a

T(k) =
b∑

k=a

(G(k + 1) − G(k)) = G(b + 1) − G(a).

In this case, we have computed a closed form of (1) using the classical telescoping
method by first computing an anti-differenceG(k) of the summandT(k). If either the
non-existence within a class of functions of an anti-differenceG for the summandT is
proven, or it is not known how to compute such aG, then a plausible approach is to apply
an algorithm which solves the additive decomposition problem to decomposeT in the form
T(k) = (Ek − 1)T1 + T2 whereT2 is simpler thanT in some sense. Then the application
of the classical telescoping method to(Ek − 1)T1 results in

b∑
k=a

T(k) = T1(b + 1) − T1(a) +
b∑

k=a

T2(k).

2.1. Indefinite sums

There are different algorithms for computing anti-differences for different classes of
summands. Lafon’s survey (Lafon, 1983) includes treatments for polynomials, rational
functions, hypergeometric terms, and indefinite summation using extensions of function

1306 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

domains. In addition to the above classes, the following methods can also be included in
the set of tools for solving the indefinite summation problem:

(1) Koepf’s extension (Koepf, 1998) of Gosper’s algorithm (Gosper, 1977) to j -fold
hypergeometric terms.

(2) The extension of Gosper’s algorithm as described inPetkovšek et al.(1996, Chapter
5) to handle sums of hypergeometric terms.

(3) The method of accurate summation as presented inAbramov and Hoeij(1999) to
handle functions whose minimal annihilators can be computed.

2.2. Additive decomposition

For a given functionT(k), an algorithm which solves the additive decomposition
problem (ADP) constructs two functionsT1(k) andT2(k) such that

T(k) = (Ek − 1)T1(k) + T2(k) (2)

whereT2(k) is “simpler” thanT(k) in some sense. The functionsT1(k) and T2(k) are
called thesummableand thenon-summableparts ofT(k), respectively. It is important
that any algorithm which solves the ADP should guarantee that if the input functionT(k)

is summable, then the computed non-summable partT2(k) returned from the algorithm
should be identically zero. It is also desirable thatT1(k) is in some sense “maximal”, in
other words that ifT2(k) is given to that same algorithm solving the ADP, its summable
part should be identically zero.

Let T(k) be arational functionof k. Then the ADP forT was solved inAbramov
(1975) (see alsoAbramov, 1995; Paule, 1995; Pirastu and Strehl, 1995). The characteristic
property of the non-summable partT2(k) is that its denominator has the lowest degree.
In this case, one can express the indefinite sum ofT2(k) in terms of the digamma and
polygamma functions, and the problem of computing a closed form for the indefinite sum
of the input rational functionT(k) is solved.

Let T(k) be ahypergeometric termin k over K (or a term for short). Recall that the
characteristic property of a termT(k) is that the ratioT(k + 1)/T(k) is a rational function
of k overK. This rational function, denoted byCk(T), is thecertificateof T(k). A term
T(n, k) in two variablesn andk overK has two certificatesCn(T) = T(n + 1, k)/T(n, k)

andCk(T) = T(n, k + 1)/T(n, k). They are named then-certificate and thek-certificate,
respectively. These certificates are rational functions ofn andk overK.

Definition 2.1 (Abramov and Petkovˇsek, 2001b). Let R ∈ K(k)\{0}. If there are non-
zero polynomialsf1, f2, v1, v2 ∈ K[k] such that

(i) R = F · (EkV)/V whereF = f1/ f2, V = v1/v2, and gcd(v1, v2) = 1,
(ii) gcd(f1, Eh

k f2) = 1 for all h ∈ Z,

thenF · (EkV)/V is arational normal form (RNF)of R.

For every rational function one can construct an RNF (Abramov and Petkovˇsek, 2001b)
which in general is not unique.

As presented inAbramov and Petkovˇsek (2001a, 2002), the algorithm to solve the
ADP for a termT(k) constructs two termsT1(k), T2(k) such that (2) holds, and either
T2 vanishes orCk(T2) has an RNF

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1307

f1
f2

Ek(v1/v2)

(v1/v2)
(3)

with v2 of minimal degree. Any RNF ofCk(T2) of the form (3) hasv2 ∈ K[k] of the same
minimal degree.

Theorem 2.1 (Abramov and Petkovˇsek, 2001a). Let T(k) be a term and equality(2) be
valid for some terms T1(k), T2(k). Suppose that T2(k)
= 0. Let (3) be an RNF ofCk(T2).
Then(2) is an additive decomposition of T(k) iff for each irreducible p fromK[k] such
that p | v2, the following three properties hold:

Pa: Eh
k p | v2 ⇒ h = 0, Pb: Eh

k p | f1 ⇒ h < 0, Pc: Eh
k p | f2 ⇒ h > 0. (4)

When working with terms in two variablesn and k over C, we can considern as a
parameter, and hence can construct an additive decomposition with respect tok:

T(n, k) = (Ek − 1)T1(n, k) + T2(n, k). (5)

If (3) is an RNF with respect tok of Ck(T2) with f1, f2, v1, v2 ∈ C[n, k], then for each
irreducible factorp ∈ C[n, k] of v2, properties (4) hold. HereK is C(n), andK(k) is
C(n, k).

2.3. Implementation

The functions for computing indefinite sums are grouped together into the package
IndefiniteSum:

> print(IndefiniteSum);
module()
export Polynomial, Rational, Hypergeometric, AccurateSummation,

Indefinite, AddIndefiniteSum, RemoveIndefiniteSum;
description “indefinite sums”;
end module

The diagram inFig. 1 provides the classes of summands the package can handle, the
corresponding algorithm which handles each class, and the ordering of these algorithms.
They include the classes of polynomials, rational functions, hypergeometric terms,j -fold
hypergeometric terms, and functions for which minimal annihilators can be constructed,
e.g., d’Alembertian terms. The main functionIndefinite, which computes an indefinite
sum of a given input expression, is a combination of the algorithms handling these
classes. The two functionsAddIndefiniteSum, RemoveIndefiniteSumprovide a library
extension mechanism which allows the addition and removal of closed forms of indefinite
sums which the existing algorithms cannot yet handle (a modified structural pattern-
matching approach is employed). Currently the summands that can be handled in this
way include expressions containing the harmonic function, the logarithmic function,
the digamma and polygamma functions, as well as the sine, cosine and exponential
functions.

1308 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

Fig. 1. Indefinite sum: a flowchart.

Example 2.1.

> T := binomial(k/2+n,n)*2^(-n);

T := 2−n
(

k/2 + n

n

)
.

SinceT is a 2-fold term ink, i.e., T(k + 2)/T(k) is a rational function ofk, Koepf’s
extension to Gosper’s algorithm is used:

> Sum(T,k) = Hypergeometric(T,k);∑
k

2−n
(

k/2 + n

n

)
= 1

2(n + 1)
2−n

(
k

(
k/2 + n

n

)
+ (k + 1)

(
k/2 + 1/2 + n

n

))
.

Example 2.2.

> T := k^2/binomial(2*k,k)/(k^2+3*k+2);

T := k2

(k2 + 3k + 2)
(2k

k

) .
Although the termT is not summable, it is possible to apply the algorithm which solves
the ADP to express the indefinite sum ofT in terms of the indefinite sum of a simpler term
T2 which is the non-summable part ofT :

> Sum(T,k) = Hypergeometric(T,k);

∑
k

k2

(k2 + 3k + 2)
(2k

k

) = −6k2 − 11k − 125

9(k + 1)

k−1∏
i=1

i

2(2i + 1)

+
∑

k

457k + 250

54(k + 1)

k−1∏
i=1

i

2(2i + 3)
.

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1309

Note that a minimal multiplicative representation ofT is

k2

2(k + 1)(k + 2)

k−1∏
i=1

i + 1

2(2i + 1)
.

Example 2.3 (Abramov and Hoeij, 1999).

> T := 1/5*((1/2+1/2*5^(1/2))^k-(1/2-1/2*5^(1/2))^k)^2;

T :=

 1√

5



(

1 + √
5

2

)k

−
(

1 − √
5

2

)k





2

.

The complete factored minimal annihilator forT can be constructed using
Abramov and Zima(1997), and the application of the method of accurate summation
(Abramov and Hoeij, 1999) provides a closed form for the indefinite sum ofT :

> Sum(T,k) = AccurateSummation(T,k);

∑
k


 1√

5


(1 + √

5

2

)k

−
(

1 − √
5

2

)k





2

= 1

5
(−1)k − 1

10
(1 + √

5)

(
1 − √

5

2

)2k

− 1

10
(1 − √

5)

(
3 + √

5

2

)k

.

Note that instead of calling a specific routine corresponding to the given class of
summands as shown in the above three examples, calling the general routineIndefinite
should yield the same answers.

Example 2.4. Let

> T := 2^(2*k-1)/k/(2*k+1)/binomial(2*k,k)+
> (k+1)^2*4^(k+1)/(k+2)/(k+3);

T := 1

k(2k + 1)
22k−1

(
2k

k

)−1

+ (k + 1)2

(k + 2)(k + 3)
4k+1.

SinceT is a sum of terms, the extension of Gosper’s algorithm described inPetkovšek et al.
(1996, Chapter 5) is used:

> Sum(T,k) = Indefinite(T,k);

∑
k

(
1

k(2k + 1)
22k−1

(
2k

k

)−1

+ (k + 1)2

(k + 2)(k + 3)
4k+1

)

= −1

k
22k−1

(
2k

k

)−1

+ (k − 1)

3(k + 2)
4k+1.

1310 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

Example 2.5.

> T := sin(k)*cos(k+1)-ln(2*k);

T := sin(k) cos(k + 1) − ln(2k).

Since knowledge about the functions sin, cos, and ln is known via the library extension
mechanism, it is possible to compute a closed form for

∑
k T :

> Sum(T,k) = Indefinite(T,k);∑
k

(sin(k) cos(k + 1) − ln(2k))

= −1

2

k − k cos(1)2 + cos(k)2 + 2k ln(2) sin(1) + 2 ln(Γ (k)) sin(1)

sin(1)
.

Consider the problem of computing an anti-difference of the hyperbolic function sinh(ak)
with respect tok:

> Indefinite(sinh(a*k),k);∑
k

sinh(ak)

The use of the library extension mechanism can help Maple solve the problem.
> sumsinh := proc(f,k) local a;
> if not type(f,’sinh’(linear(k))) or
> depends(op(f)/k,k) then
> FAIL
> else
> a := op(f)/k;
> -sinh(a*k)/2+sinh(a)*cosh(a*k)/2/(cosh(a)-1)
> end if;
> end proc:
> AddIndefiniteSum(’sinh’,sumsinh);
> Indefinite(sinh(a*k),k);

−1

2
sinh(3k) + sinh(3)

2(cosh(3) − 1)
cosh(3k).

3. Creative telescoping

The method of creative telescoping can be useful when the summandT is a function of
the summation indexk and of a parametern, i.e., T = T(n, k). If it is not clear how to
construct a functionG(n, k) such thatG(n, k + 1) − G(n, k) = T(n, k), then a possible
approach is to construct atelescoperfor T , in other words an operator

L = aρ(n)Eρ
n + · · · + a1(n)En + a0(n) (6)

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1311

such that for the functioñT(n, k) = LT(n, k) a corresponding functionG(n, k) can be
computed. That is,

LT(n, k) = G(n, k + 1) − G(n, k). (7)

This provides an opportunity to find closed forms of definite sums ofT̃(n, k), where the
summation bounds can be functions which depend onn. However, we are computing the
sum ofT̃(n, k), instead ofT(n, k). For the definite sum ofT(n, k), the application of the
operator

∑v(n)
k=u(n)

to both sides of (7) results in

aρ(n)

v(n)∑
k=u(n)

T(n + ρ, k) + · · · + a0(n)

v(n)∑
k=u(n)

T(n, k) = H (n) (8)

whereH (n) = G(n, v(n) + 1) − G(n, u(n)). If u(n), v(n) are polynomials of degree 1 or
constants (±∞ included), then by adding toH (n) a fixed number of terms obtained from
T(n, k), one can transform (8) to a recurrence

aρ(n) f (n + ρ) + · · · + a1(n) f (n + 1) + a0(n) f (n) = H ∗(n), (9)

where f (n) = ∑v(n)
k=u(n) T(n, k). This recurrence can be used for findingf (n) (if we are

able to solve it), or to prove some properties off (n) by induction onn.
The theory of creative telescoping was initially designed byZeilberger(1991) for the

case when the summandT(n, k) is a hypergeometric term. In this case, the operatorL of
the form (6) is an element fromC[n, En], and the functionG(n, k) such that (7) holds is
a hypergeometric term. The theory includes an algorithm, called Zeilberger’s algorithm or
Z for short, for computing aZ-pair (L, G) for T . It was later generalized to holonomic
functions byChyzak and Salvy(1998) andChyzak(2000). It should be noted that even
for the hypergeometric case, the construction of theZ-pairs can be very expensive. It is
therefore desirable that problems related to the efficiency ofZ be solved.

3.1. When does Zeilberger’s algorithm succeed?

For a given termT(n, k), if Z terminates in finite time givenT as input, and succeeds
in computing aZ-pair for T , then we say that “Z is applicableto T”, or “there exists a
Z-pair for T”.

Definition 3.1. A polynomial α(n, k) ∈ C[n, k] is integer-linear if it has the form
an+ bk + c wherea, b ∈ Z andc ∈ C.

Definition 3.2 (Petkovšek et al., 1996; Wilf and Zeilberger, 1992). A term T(n, k) is
proper if it can be written in the form

P(n, k)

∏l
i=1 Γ (αi (n, k))∏m
i=1 Γ (βi (n, k))

unvk, (10)

whereαi (n, k), βi (n, k) are integer-linear,l , m ∈ N, u, v ∈ C, andP(n, k) ∈ C[n, k].
The question of whetherZ is applicable to a termT was not conclusively answered for

quite some time, although a sufficient condition was known via the “fundamental theorem”

1312 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

(Petkovšek et al., 1996; Wilf and Zeilberger, 1992) which states that ifT(n, k) is proper,
then there exists aZ-pair forT . The following theorem provides a necessary and sufficient
condition for the termination ofZ.

Theorem 3.1 (Abramov, 2002a). Let T(n, k) be a term in n and k, and(5) be an additive
decomposition of T with respect to k. Let(3) be an RNF with respect to k ofCk(T2) with
v2 ∈ C[n, k]. Then a Z-pair for T(n, k) exists iff each factor ofv2(n, k) irreducible in
C[n, k] is integer-linear.

For a given polynomialf (n, k) ∈ C[n, k], a decision procedure for the factorability of
f into integer-linear polynomials is described inAbramov and Le(2000). This procedure
does not require a complete factorization off into irreducible factors.

3.2. Efficient algorithms for computing the minimal Z-pairs

Let T(n, k) be a term. In this section we assume thatZ is proven applicable toT .
The algorithm uses an item-by-item examination on the orderρ of the telescopersL. It
starts with the value of 0 forρ and increasesρ until it is successful in finding aZ-pair
(L, G) for T . Since the computed telescoper is of minimal possible order, it is called the
minimal telescoper, and the computedZ-pair is called theminimal Z-pair. Note that it is
not necessarily true that the recurrence (9) obtained by summing both sides of (7) overk is
of minimal possible order (Paule and Schorn, 1995).

Let ρ be the order of the minimal telescoper forT , thenZ simply wastes resources
trying to compute aZ-pair where the guessed orders of the telescopers are less thanρ.

For the case whereT is also a rational function ofn and k (the class of rational
functions is a proper subset of the class of terms), there exists a direct algorithm (Le,
2001, 2003) which constructs the minimalZ-pair for T efficiently without using item-by-
item examination. For the case whereT is a non-rational term, there exists an algorithm
(Abramov and Le, 2002) which computes a lower boundµ for the order of the telescopers
for T . This helps avoid the time to compute a telescoper of order less thanµ.

3.2.1. A direct algorithm for the rational case

Let T(n, k) ∈ C(n, k). Consider an additive decomposition ofT with respect tok of
the form (5). First one constructs a special representation for the non-summable partT2 as
stated in the following theorem.

Theorem 3.2 (Le, 2001). Set

T2 =
t∑

i=1

mi∑
j =1

r i j (n)

(ai n + bi k + ci) j
, ai , bi ∈ Z, bi > 0, gcd(ai , bi) = 1, ci ∈ C, (11)

r i j (n) ∈ C(n). Then T2(n, k) can be represented in the form

M1F1 + · · · + MsFs, (12)

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1313

where each Mi ∈ C(n)[En, Ek, E−1
k], each Fi = 1/(ai n + bi k + ci)

mi is such that
ai , bi ∈ Z, bi > 0, gcd(ai , bi) = 1, ci ∈ C, mi ∈ N\{0}, and for all i
= j , at least
one of the following four relations is not satisfied:

mi = mj , ai = aj , bi = bj , ci − cj ∈ Z\{0}.
T2 can be written in the form (11) sinceZ is assumed to be applicable toT . Once the
representation (12) is constructed, one can compute the minimal telescopers for each
Mi Fi ∈ C(n, k) directly and efficiently. The minimalZ-pair forT2(n, k), and subsequently
for T(n, k), can then be constructed using least common left multiple computation. This
direct algorithm is in general more efficient than the originalZ.

3.2.2. Computation of a lower bound for the general hypergeometric case
Let T(n, k) be a non-rational term. Consider an additive decomposition ofT with

respect tok of the form (5). Since the minimal telescopers forT and its non-summable
partT2 are the same, the focus is shifted to computing a lower bound for the order of the
telescopers forT2. Let an RNF with respect tok of Ck(T2) be of the form (3). For each
irreduciblep such thatp | v2, the three propertiesPa, Pb, Pc in (4) hold.

Definition 3.3 (Abramov and Le, 2002). Let M ∈ C[n, En] be such thatMT2
= 0,
and there exists an RNFF ′(EkV ′/V ′), V ′ = v′

1/v
′
2 of Ck(MT2) such that each of the

irreducible factors ofv′
2 does not have at least one of the three propertiesPa, Pb, Pc. Then

M is acrushing operatorfor T2. The minimal crushing operator is a crushing operator of
minimal order.

It is simple to show that ifL is a telescoper forT2, thenL is also a crushing operator
for T2. Hence, the problem of computing a lower bound for the order of the telescopers
for T2 is reduced to the problem of computing a lower bound for the order of the minimal
crushing operator forT2.

Theorem 3.3 (Abramov and Le, 2002). Let Ck(T2) have an RNF with respect to
k F(EkV)/V of the form(3), f1, f2, v1, v2 ∈ C[n, k], and D= d1(n, k)/d2(n, k), d1, d2 ∈
C[n, k], be such thatCn(T2) = D(EnV)/V . Let there exist a crushing operator for T2 of
orderρ. Then for each integer-linear factor p ofv2, degk p = 1, there exists an integer h
such that

Eh
k p | Env2 · E2

nv2 · · · Eρ
nv2 · d2 · End2 · · · Eρ−1

n d2. (13)

As a consequence, ifρp is the minimal positive value ofρ such that there exists an h
satisfying(13), then the order of any crushing operator for T2 is not less thanµ =
maxp|v2 ρp.

Since Z is assumed to be applicable to the input termT(n, k), it follows from
Theorem 3.1that the polynomialv2 ∈ C[n, k] factors into integer-linear polynomials.
By Abramov and Petkovˇsek (2001c), the polynomiald2 ∈ C[n, k] in Theorem 3.3also
factors into integer-linear polynomials. An algorithm, calledLowerBound, which realizes
Theorem 3.3is described inAbramov and Le(2002). Once each of the two polynomials
v2, d2 is written as a product of integer-linear polynomials (this does require a complete
factorization of monic univariate polynomials into irreducible factors, seeLe (2001)),

1314 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

Fig. 2. Algorithms for computing minimalZ-pairs.

the algorithm is reduced to solving bivariate linear diophantine equations, a very
inexpensive operation.

3.3. Implementation

3.3.1. Construction of the minimal Z-pairs
The algorithms presented in this section, when combined with the originalZ, provide

us with a design of a group of functions for computing minimalZ-pairs for terms. The
diagram inFig. 2 shows a sketch of the design. In our implementation, this group of
functions forms the moduleTelescopers:

> print(Telescopers);
module()
export AdditiveDecomposition, IsZApplicable, ZpairDirect, LowerBound,

Zeilberger, MinimalZpair;
option package;
description “Algorithms for computing minimalZ-pairs for terms”;
end module

The exported variables indicate the functions that are accessible to users. They have the
following descriptions:

(1) AdditiveDecomposition(T, k) computes an additive decomposition of the termT in
k. The output is a list of two elements[T1, T2] representing the two termsT1, T2 in
an additive decomposition ofT ;

(2) IsZApplicable(T, n, k) returnstrue if Z is applicable to the termT(n, k), false
otherwise;

(3) ZpairDirect (R, n, k, En) computes the minimalZ-pair for the rational function
R(n, k) using the direct algorithm. The output is a list of two elements[L, G]
representing the minimalZ-pair (L, G) for R, or an error message if it is proven
thatZ is not applicable toR;

(4) LowerBound(T, n, k) returnsµ ∈ N which is the computed lower bound for the
order of the telescopers for the termT(n, k), or an error message if it is proven that
Z is not applicable toT ;

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1315

(5) Zeilberger (T, n, k, En) returns a list of two elements[L, G] representing the
minimal Z-pair (L, G) for the input termT(n, k). This is an implementation of the
originalZ. Note that an upper boundρ for the order of the telescopers forT(n, k)

needs to be specified in advance (the default value is 6). The function returns an error
message if no telescoper of order less than or equal toρ exists.

The main function of the module isMinimalZpair. It has the calling sequence
“MinimalZpair (T, n, k, En)” where T is a term inn and k, and En denotes the shift
operator with respect ton. This function follows the design as sketched inFig. 2. For
an input termT(n, k), the execution steps can be described as follows:

1. determine the applicability ofZ to T ;
2. if it is proven in step 1 that aZ-pair for T does not exist, return the conclusive error

message “there does not exist aZ-pair for T”; Otherwise,

a. if T is a rational function ofn andk, apply the direct algorithm to compute the
minimal Z-pair for T ;

b. T is a non-rational term. First compute a lower boundµ for the order of the
telescopers forT . Then compute the minimalZ-pair using the originalZ with
µ as the starting value for the guessed orders.

For case 2b, let(T1, T2) be an additive decomposition ofT with respect tok. Since the
non-summable partT2 is simpler thanT in some sense, we first applyZ to T2 to obtain the
minimal Z-pair (L, G) for T2. It can be shown that(L, LT1 + G) is the minimalZ-pair
for the input termT .

Example 3.1. This example is a comparison between the originalZ and the direct
algorithm (case 2a ofMinimalZpair). The test samples are the same as those used in
Example 5 inLe (2001). Three sets of tests(S1, S2, S3), each of which consists of 20
rational functions ofn andk, were randomly generated. Each rational function is generated
to be of the form (12), but is given to the algorithm with numerator and denominator in
expanded form. We ranMinimalZpair, Zeilberger(denoted byM andZ respectively) on
these tests, and collected resource requirements.1 We also enforced a limit of 2000 s on
each input rational function in the tests. Note that we only recorded the time and space
requirements for the tests that ran under this time limit.

Table 1shows the time and space requirements for testsS1, S2 andS3.

Example 3.2. Consider the term

T(n, k) = 1

nk + 1

(
2n

2k

)
.

It takes LowerBound0.62 s and 3045 kB to return the error message “Error, (in
LowerBound) Zeilberger’s algorithm is not applicable”. The function recognizes that the
polynomialv2(n, k) in Theorem 3.1is (nk + 1) which does not factor into a product of
integer-linear polynomials, and returns the conclusive answer quickly. On the other hand,

1 All the reported timings were obtained on a 400 MHz SUN SPARC SOLARIS with 1 GB RAM.

1316 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

Table 1
Time and space requirements forMinimalZpair andZeilberger

Completed Timing (s) Memory (kB)
M Z M Z M Z

S1 20 15 12.15 3127.84 54,159 8,095,930
S2 20 18 12.43 2635.94 54,653 7,873,146
S3 20 0 959.07 – 3,864,026 –

it takes Zeilberger 33.95 s and 166,396 kB to return the error message “Error, (in
Zeilberger) No recurrence of order 6 was found”. The function does not know if aZ-
pair for T exists. It tries to compute one and returns an inconclusive answer. Since there
does not exist aZ-pair for T , the higher the value of the upper bound for the order ofL is
set, the more time and memory are wasted.

Example 3.3. Forb ∈ N\{0}, j ∈ {1, 3}, let

T1 = 1

(nk − 1)(n − bk − 2) j (2n + k + 3)! , T2 = 1

(n − bk − 2)(2n + k + 3)! .
Consider the termT(n, k) = (Ek − 1)T1(n, k) + T2(n, k). This example is a comparison
betweenZeilbergerand case 2b ofMinimalZpair. The computed lower bound for the order
of the telescopers isb, while the order of the minimal telescoper isb+ 1. Letµ ∈ N be the
starting value for the guessed order of the telescopers. Recall that the functionZeilberger
appliesZ to the input termT with µ = 0, while MinimalZpair appliesZ to the non-
summable termT2 in the decomposition (5) with µ = b. Table 2shows the time and space
requirements. As one can easily notice, asb and/or j increase, the relative performance of
Zeilberger(compared toMinimalZpair) quickly worsens.

3.4. A comparison

There exist different Maple implementations ofZ such asZeil in the EKHAD
package (Petkovšek et al., 1996), sumrecursion in the sumtools package (Koepf,
1998), SummandToRecin the HYPERG package (Gauthier, 1999). A Mathematica
implementation (the functionZb) is described inPaule and Schorn(1995). These programs
are in principle equivalent to the programZeilbergerin the moduleTelescopers. They
do not include an implementation of the criterion for the applicability ofZ.

For the case where the input is a rational function, a program such asZb “accepts an
input if the irreducible factors of the denominator are integer-linear” (Paule and Schorn,
1995). This is equivalent to the condition that the input be a proper term. ByTheorem 3.1,
such a program prevents the computation of aZ-pair when such a pair exists. Note that we
also implemented in the programMinimalZpaira direct and efficient algorithm to compute
the minimalZ-pairs.

For the case where the inputT(n, k) is a non-rational term, all the aforementioned
programs applyZ directly to T . On the other hand,MinimalZpair first computes a lower
boundµ for the order of the telescopers (a fairly low-cost operation), and then appliesZ to
the termT2 in the additive decomposition (5) usingµ as the starting value for the guessed

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1317

Table 2
Time and space requirements ofMinimalZpair andZeilberger

Timing (s) Memory (kB)
j b MinimalZpair Zeilberger MinimalZpair Zeilberger

1 6.49 5.35 27,838 24,702
2 8.34 34.64 33,066 142,889

1 3 11.13 124.53 44,233 535,736
4 14.46 570.02 56,410 1,882,730
5 25.79 2999.22 97,506 6,536,309

1 14.64 16.40 62,566 73,830
2 17.24 228.59 68,304 770,529

3 3 20.15 1,286.51 78,701 3,074,051
4 24.08 8,771.08 91,844 10,766,646
5 38.60 77,663.68 139,823 33,423,168

orders of the telescopers (note that the existence of aZ-pair is guaranteed). The minimal
Z-pair for T can then be easily obtained. Experimentation shows that this proposed
approach helps expedite the construction of the minimalZ-pairs.

3.4.1. The Maple package hypergeometric
The packageHypergeometric provides tools for working with terms in general, and

for finding closed forms of indefinite and definite sums of terms in particular. It includes
theTelescopers package.

> print(Hypergeometric);
module()
export IsHypergeometricTerm, AreSimilar, PolynomialNormalForm,

RationalCanonicalForm, MultiplicativeDecomposition,
AdditiveDecomposition, Gosper, ExtendedGosper, Zeilberger,
ZeilbergerRecurrence, IsZApplicable, KoepfGosper, KoepfZeilberger,
ExtendedZeilberger, ZpairDirect, LowerBound, MinimalZpair,
ConjugateRTerm, WZMethod, IndefiniteSum, DefiniteSum;

option package;
description “Tools for working with hypergeometric terms”;
end module

The module consists of three main components.

(1) The first component includes functions for computing normal forms of
rational functions and of terms:PolynomialNormalForm, RationalCanonicalForm,
MultiplicativeDecomposition, and AdditiveDecomposition. See Abramov et al.
(2001) for functional specifications of these functions.

(2) The second component includes functions for indefinite and definite sums of
terms. For indefinite sums, they areGosper, KoepfGosper, ExtendedGosper,
and AdditiveDecomposition, and are described inSection 2.3. For definite
sums, in addition to the functions as described inSection 3.3.1, the function

1318 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

ZeilbergerRecurrenceis also included in the set of tools for definite sums of terms.
ZeilbergerRecurrence(T, n, k, f, l . . . u) constructs the induced recurrence for the
definite sumf (n) = ∑u

k=l T(n, k) whereT is a term inn andk.

(3) The functions in the first two components, when combined with the existing
functions of the Maple system, allow one to compute closed forms of indefinite and
definite sums of terms. The two functions in the third component areIndefiniteSum
andDefiniteSum. IndefiniteSumis described inSection 3.3.1. DefiniteSumhas the
calling sequenceDefiniteSum(T, n, k, l . . . u). The function tries to compute a closed
form of the definite sumf (n) = ∑u

k=l T(n, k) whereT(n, k) is a term inn andk.
The four types of definite sums supported are

un+v∑
k=rn+s

T(n, k),

∞∑
k=rn+s

T(n, k),

un+v∑
k=−∞

T(n, k),

∞∑
k=−∞

T(n, k), r, s, u, v ∈ Z.

The diagram inFig. 3shows the combination of algorithms for computing closed forms of
definite sums of terms.

The combination ofZ and Petkovˇsek’s algorithmHyper (Petkovšek, 1992) plays an
important role in the study of definite sums of terms. For a given termT(n, k), we are
interested in knowing if there exists aclosed formof

∑b(n)
k=a(n) T(n, k). By closed form,

we mean the sum can be expressed as a linear combination of a fixed number of terms.
First, the application ofZ to T(n, k) yields a linear recurrence operatorL ∈ C[n, En] of
the form (6) and a termG(n, k) such that relation (7) holds. By summing both sides of
(7) over a specified range ofk, we obtain in general an inhomogeneous linear recurrence
equation with polynomial coefficients of the form (9). As an example, let

f (n) =
un+v∑

k=rn+s

T(n, k), r, s, u, v ∈ Z.

Then (9) becomes

ρ∑
i=0

ai (n) f (n + i) = G(n, un + v + 1) − G(n, rn + s)

+
ρ∑

i=0

ai (n)


 rn+s−1∑

k=rn+s+r i

T(n + i , k) +
un+v+ui∑

k=un+v+1

T(n + i , k)


 . (14)

Hypernow comes into play (see alsoHoeij, 1999). If the recurrence (9) has a solutionf (n)

which is a linear combination of a fixed number of terms inn, thenHyper will find such
a solution, otherwise it returns the message “No such solution exists”. It is not surprising
that closed forms of many sums with binomial coefficients as summands inGould(1972)
andRiordan(1968) can be obtained by first usingZ, and thenHyper.

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1319

Fig. 3. Definite sums of hypergeometric terms.

Example 3.4 (Riordan, 1968, Ex. 11, p. 164). LetT be the hypergeometric term

> T := binomial(2*n,2*k)^2;

T :=
(

2n

2k

)2

.

Then

> Sum(T,k=0...n) = DefiniteSum(T,n,k,0...n);

n∑
k=0

(
2n

2k

)2

= 1

2

4n
(
Γ
(
2n + 1

2

)√
π + (−1)n Γ

(
n + 1

2

)2
)

√
πΓ

(
n + 1

2

)
Γ (n + 1)

.

Note that we canenlarge the domain of closed forms by including d’Alembertian
terms—a d’Alembertian term can be described as nested indefinite sums of hypergeometric
terms, or equivalently, as a term which is annihilated by a product of first-order difference
operators (seeAbramov and Zima, 1996). The functionDefiniteSumcan handle this case
as well.

4. Definite summation

In addition to the classical and the creative telescoping methods, it is a standard
practice to have a front-end, principally based on a pattern-matching approach, to recognize
certain specific types of definite sums. We also employ another quite powerful method:
the conversion method which is a combination of both algorithmic and pattern-matching
approaches.

4.1. The conversion method

For a given definite sum, the conversion method consists of two steps:

(1) Conversion of the given definite sum to an expression involving hypergeometric
series. See, for example, the hypergeometric series lookup algorithm from
Petkovšek et al.(1996, Chapter 3).

(2) Conversion of the hypergeometric series produced in step (1) to standard special
and elementary functions. Examples of these standard functions include Bessel

1320 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

Fig. 4. Definite sum: a flowchart.

functions, Legendre functions, and elliptic integrals. The process is a combination
of the algorithmic approach as developed inRoach(1996) and a pattern-matching
approach from a hypergeometric database such asPrudnikov et al.(1990).

4.2. Implementation

The packageDefiniteSum consists of functions for computing closed forms of definite
sums:

> print(SumTools:-DefiniteSum);
module()
export Telescoping, CreativeTelescoping, pFqToStandardFunctions, Definite;
description “definite sums”;
end module

The exported functionsTelescoping, CreativeTelescoping, pFqToStandardFunctions
compute closed forms of definite sums using the classical telescoping method, the creative
telescoping method, and the conversion method respectively. The main functionDefiniteis
the combination of these methods with the ordering as shown inFig. 4.

Example 3.4illustrates the use of the creative telescoping method for computing closed
forms of definite sums. We now provide some examples of definite sums whose closed
forms are computed using other methods.

Example 4.1. Let

> T := (2+k)^(k-2)*(1+n-k)^(n-k)/(k!*(n-k)!);

T := (2 + k)k−2(1 + n − k)n−k

k!(n − k)! .

Consider the problem of computing a closed form off (n) = ∑n
k=0 T . The front-end

(based on a pattern-matching approach) recognizes that the summand is of Abel’s type,
and hence a closed form forf (n) is computed as:

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1321

> Sum(T,k=0...n) = Definite(T,k=0...n);

n∑
k=0

(2 + k)k−2(1 + n − k)n−k

k!(n − k)! = 1

4

(3 + n)n

n! − 1

6

(3 + n)n−1

(n − 1)! .

Example 4.2.

> T := binomial(2*n-2*k,n-k)*2^(4*k)*
((2*k)*(2*k+1)*binomial(2*k,k));

T := 1

2

(2n−2k
n−k

)
24k

k(2k + 1)
(2k

k

) .
SinceT is summable with respect tok, a closed form of

∑n
k=1 T can be computed using

the classical telescoping method:

> Sum(T,k=1...n) = Definite(T,k=1...n);

n∑
k=1

1

2

(2n−2k
n−k

)
24k

k(2k + 1)
(2k

k

) = 4
(2n − 1)

(2n−2
n−1

)
2n + 1

.

Example 4.3. Let

> T := 2^(2*k)/Pi^(1/2)*GAMMA(k-n)*GAMMA(k+n)/GAMMA(2*k+1)*z^k;

T := 22kΓ (k − n)Γ (k + n)zk

√
πΓ (2k + 1)

.

In order to compute a closed form off (n) = ∑∞
k=0 T , the functionDefinite uses

the conversion method by first convertingf (n) to (−√
π/(sin(πn)n)2F1(n,−n; 1/2; z),

which is then converted to standard functions:

> Sum(T,k=0...infinity) = Definite(T,k=0...infinity);

∞∑
k=0

22kΓ (k − n)Γ (k + n)zk

√
πΓ (2k + 1)

= −
√

π cos(2n arcsin(
√

z)) csc(πn)

n
.

5. The SumTools package

Computing a closed form of a sum is one of the basic operations in general computer
algebra systems such as Maple, Mathematica, Macsyma, MuPAD. We propose in this
section a re-design of summation in Maple. The focus is on a smooth integration of
independent blocks of code, and on the implementation of recently-developed algorithms.
Its design is based on four requirements:applicability, simplicity, extensibility, and
performance.

1322 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

5.1. Non-functional requirements

(1) Applicability. The package should cover a wide range of (potentially overlapping)
algorithms which handle various classes of summands. If a sum is both (1) present
in some form in a standard text covering summation, and (2) can be summed by a
published algorithm, then this package should succeed in computing a closed form
for that case.

(2) Simplicity.The output of the main entry points for summation (DefiniteSummation
andIndefiniteSummation) for the package should be as simple as possible. Simplicity
is expected to be defined externally to this package, but also to be a concept
compatible with summation.

(3) Extensibility.New algorithms should be easy to incorporate into this package. As
well, choosing the ordering in which to insert new algorithms should be objectively
decidable. For example, assuming algorithms are known for them, it should be simple
to add new code for implementing the many formulas that appear in large collections
such as those inGould(1972), Riordan(1968) andPrudnikov et al.(1990).

(4) Performance.The algorithms for any given class of summands should be the
most efficient ones known. Performance benchmarks to verify that each class of
summands is summed in the appropriate complexity class need to be built.

Note that a number of these requirements are opposites. For example, simplicity and
performance are often incompatible. Thus compromises have to be made to balance out
these requirements against one another. These natural-sounding requirements actually
have some deep implications for various aspects of the implementation. For instance,
extensibility and applicability imply a high level of uniform modularization of the
algorithms, as well as a control structure which is quite extensible. In other words, although
operationallyFigs. 1and4 describe the current control flow, the actual control structure
cannot be so hard-coded. Another point is that there needs to be a precisedesign philosophy
carefully documented, so as to guide future developers in how to decide objectively where
their new algorithms should be inserted into the existing scheme.

5.2. Functional description

The packageSumTools exports three functions and three sub-packages:

> print(SumTools);

module()
export Hypergeometric, IndefiniteSum, DefiniteSum,

IndefiniteSummation, DefiniteSummation, Summation;
local Preprocess, Tools, LimitRootOf, Floats;
option package;
description “summation tools”;
end module

The three exported functions areIndefiniteSummation, DefiniteSummation, and
Summation. IndefiniteSummation(f, k) computes a closed form of an indefinite sum of
f with respect tok; DefiniteSummation(f, k = m . . . n) computes a closed form of the

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1323

Fig. 5. SumTools package: code structure and code dependency.

definite sum off over the specified rangem . . .n of the summation indexk; Summation
(f, k) or Summation(f, k = m . . . n) handles both indefinite and definite sums.

The sub-packagesIndefiniteSum, Hypergeometric, and DefiniteSum are
described inSections 2–4, respectively.

5.3. Code structure and dependency

Fig. 5 shows code structure and code dependency of the packageSumTools. The
Preprocessfunction classifies the given sum into one of the two types (indefinite or
definite). Each type is handled by the corresponding independent sub-module. This
allows easy extensibility of functionalities. The integrability of the package as a whole is
shown by the dependency of the sub-modules:Hypergeometric provides functionalities,
while Tools provides various auxiliary tools toIndefiniteSum and DefiniteSum;
Extensibility provides a library extension mechanism toIndefiniteSum which in
turn provides functionality toDefiniteSum.

5.4. Testing

The goal is to include as many tests from different sources as possible. We have prepared
a number of tests. Many of them are taken fromGould(1972) andRiordan(1968). For the

1324 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

indefinite case, 618 summands are tested: 30 polynomials, 60 rational functions, 477
hypergeometric terms, and 51 others used for accurate summation. For the definite case,
177 summands are used to test the three main methods.

5.5. Remarks on the package

We have presented in this section a design and implementation of theSumTools
package. When the package is completed, the functionSummation is expected
to replace the current commandsum in Maple. In terms of functionality, the
package includes algorithms for accurate summation and of additive decomposition of
hypergeometric terms for the indefinite case, as well as the integration of the sub-package
SumTools:-Hypergeometric and of the functionconvert/StandardFunctions(used in
the conversion method) for the definite case. These algorithms are not implemented or not
incorporated in the currentsum(as of Maple 9).

Although the code structure is new, we should stress that we re-use good pieces of
code written by various Maple developers throughout many years. Hence, this work is a
collective contribution of many Maple developers. Of equal importance, the design also
focuses on integrability and extensibility. This hopefully will help with the maintenance
and future development.

Acknowledgements

S.A. Abramov was partially supported by the French–Russian Lyapunov Institute
under grant 98-03. K.O. Geddes was partially supported by Natural Sciences and
Engineering Research Council of Canada Grant No. RGPIN8967-01. H.Q. Le was partially
supported by the Natural Sciences and Engineering Research Council of Canada Grant No.
CRD215442-98.

References

Abramov, S.A., 1975. Rational component of the solutions of a first-order linear recurrence relation
with a rational right-hand side (Transl. from Zh. vychisl. mat. mat. fyz.). USSR Comput. Math.
Phys. 14, 1035–1039.

Abramov, S.A., 1995. Indefinite sums of rational functions. In: Proc. Int. Symp. on Symbolic and
Algebraic Computation, ISSAC 1995, Montreal, Canada. ACM Press, pp. 303–308.

Abramov, S.A., 2002a. Applicability of Zeilberger’s algorithm to hypergeometric terms. In: Proc.
Int. Symp. on Symbolic and Algebraic Computation, ISSAC 2002, Lille, France. ACM Press,
pp. 1–7.

Abramov, S.A., 2002b. When does Zeilberger’s algorithm succeed? Adv. Appl. Math. 30, 424–441.
Abramov, S.A., Hoeij, M.v., 1999. Integration of solutions of linear functional equations. Integral

Transform. Spec. Funct. 8 (1–2), 3–12.
Abramov, S.A., Le, H.Q., 2000. Applicability of Zeilberger’s algorithm to rational functions.

In: Proc. Formal Power Series and Algebraic Combinatorics, FPSAC2000, Moscow, Russia.
Springer-Verlag LNCS, pp. 91–102.

Abramov, S.A., Le, H.Q., 2002. A lower bound for the order of telescopers for a hypergeometric
term. In: Proc. Formal Power Series and Algebraic Combinatorics, FPSAC2002, Sydney,
Australia, CD.

S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326 1325

Abramov, S.A., Petkovˇsek, M., 2001a. Minimal decomposition of indefinite hypergeometric sums.
In: Proc. Int. Symp. on Symbolic and Algebraic Computation, ISSAC 2001, London, Canada.
ACM Press, pp. 7–14.

Abramov, S.A., Petkovˇsek, M., 2001b. Canonical representations of hypergeometric terms. In: Proc.
Formal Power Series and Algebraic Combinatorics, FPSAC2001, Arizona, USA, pp. 1–10.

Abramov, S.A., Petkovˇsek, M., 2001c. Proof of a conjecture of Wilf and Zeilberger. Preprint Series
of the Institute of Mathematics, Physics and Mechanics, vol. 39. no. 748, Ljubljana.

Abramov, S.A., Petkovˇsek, M., 2002. Rational normal forms and minimal decompositions of
hypergeometric terms. J. Symbolic Comput. 33 (5), 521–543.

Abramov, S.A., Zima, E.V., 1996. D’Alembertian solutions of inhomogeneous linear equations
(differential, difference, and some other). In: Proc. Int. Symp. on Symbolic and Algebraic
Computation, ISSAC 1996, Z¨urich, Switzerland. ACM Press, pp. 232–240.

Abramov, S.A., Zima, E.V., 1997. Minimal completely factorable annihilators. In: Proc. Int.
Symp. on Symbolic and Algebraic Computation, ISSAC 1997, Maui, Hawaii, USA. ACM Press,
pp. 290–297.

Abramov, S.A., Geddes, K.O., Le, H.Q., 2001.HypergeometricSum: a Maple package for finding
closed forms of indefinite and definite sums of hypergeometric type. Technical Report CS-2001-
24, School of Computer Science, University of Waterloo, Ontario, Canada.

Abramov, S.A., Geddes, K.O., Le, H.Q., 2002a. Computer algebra library for the construction of
the minimal telescopers. In: Cohen, A.M., Gao, X., Takayama, N. (Eds.), International Congress
of Mathematical Software. World Scientific, pp. 319–329.

Abramov, S.A., Carette, J.J., Geddes, K.O., Le, H.Q., 2002b. Symbolic summation in Maple.
Technical Report CS-2002-32, School of Computer Science, University of Waterloo, Ontario,
Canada.

Bauer, A., Petkovˇsek, M., 1999. Multibasic and mixed hypergeometric Gosper type algorithm.
J. Symbolic Comput. 28, 711–736.

Böing, H., Koepf, W., 1999. Algorithms forq-hypergeometric summation in computer algebra.
J. Symbolic Comput. 11, 1–23.

Chyzak, F., 2000. An extension of Zeilberger’s fast algorithm to general holonomic functions. Dis.
Math. 217 (1–3), 115–134.

Chyzak, F., Salvy, B., 1998. Non-commutative elimination in Ore algebras proves multivariate
identities. J. Symbolic Comput. 26 (2), 187–227.

Gauthier, B., 1999. HYPERG, Maple package, user’s reference manual. Version 1.0.
http://www-igm.univ-mlv.fr/∼gauthier/HYPERG.html.

Gosper, Jr. R.W., 1977. Decision procedure for indefinite hypergeometric summation. Proc. Natl.
Acad. Sci. USA 75, 40–42.

Gould, H.W., 1972. Combinatorial Identities. Morgantown, W.Va.
Hoeij, M.v., 1999. Finite singularities and hypergeometric solutions of linear recurrence equations.

J. Pure Appl. Algebra 139, 109–131.
Koepf, W., 1998. Hypergeometric Summation: An Algorithmic Approach to Summation and Special

Function Identities. Vieweg.
Koornwinder, T.H., 1993. On Zeilberger’s algorithm and itsq-analogue. J. Comput. Appl. Math. 48,

91–111.
Krattenthaler, C., 1995. HYP and HYPQ–Mathematica packages for the manipulation of binomial

sums and hypergeometric series, respectivelyq-binomial sums and basic hypergeometric series.
J. Symbolic Comput. 20, 737–744.

Lafon, J.C., 1983. Summation in finite terms. In: Buchberger, B., Collins, G.E., Loos, R. (Eds.),
Computer Algebra: Symbolic and Algebraic Computation. Springer, Verlag, Wien, New York,
pp. 71–77.

http://www-igm.univ-mlv.fr/~gauthier/HYPERG.html

1326 S.A. Abramov et al. / Journal of Symbolic Computation 38 (2004) 1303–1326

Le, H.Q., 2001. A direct algorithm to construct Zeilberger’s recurrences for rational functions.
In: Proc. Formal Power Series and Algebraic Combinatorics, FPSAC2001, Arizona, U.S.A,
pp. 303–312.

Le, H.Q., 2003. A direct algorithm to construct the minimalZ-pairs for rational functions. Adv.
Appl. Math. 30, 137–159.

Monagan, M.B., Geddes, K.O., Heal, K.M., Labahn, G., Vorkoetter, S.M., McCarron, J.,
DeMarco, P., 2002. Maple 8 introductory programming guide. Waterloo Maple Inc., Waterloo,
Ontario, Canada.

Paule, P., 1995. Greatest factorial factorization and symbolic summation. J. Symbolic Comput. 20,
235–268.

Paule, P., Schorn, M., 1995. A Mathematica version of Zeilberger’s algorithm for proving binomial
coefficient identities. J. Symbolic Comput. 20, 673–698.

Petkovšek, M., 1992. Hypergeometric solutions of linear recurrences with polynomial coefficients.
J. Symbolic Comput. 14, 243–264.

Petkovšek, M., Wilf, H., Zeilberger, D., 1996. A=B. A.K. Peters, Wellesley, Massachusetts.
Pirastu, R., Strehl, V., 1995. Rational summation and Gosper-Petkovˇsek representation. J. Symbolic

Comput. 20, 617–635.
Prudnikov, A.P., Brychkov, Yu., Marichev, O., 1990. Integrals and Series, volume 3: More Special

Functions. Gordon and Breach Science Publishers.
Riese, A., 1995. A Mathematicaq-analogue of Zeilberger’s algorithm for provingq-hypergeometric

identities. Master’s Thesis, Research Institute for Symbolic Computation, J. Kepler University,
Linz, Austria.

Riese, A., 1997. Contributions to symbolicq-hypergeometric summation. Ph.D. Thesis, Research
Institute for Symbolic Computation, J. Kepler University, Linz, Austria.

Riordan, J., 1968. Combinatorial Identities. John Wiley & Sons.
Roach, K., 1996. Hypergeometric function representations. In: Proc. Int. Symp. on Symbolic and

Algebraic Computation, ISSAC 1996, Z¨urich, Switzerland. ACM Press, pp. 301–308.
Schneider, C., 2001. Symbolic summation in difference fields. Ph.D. Thesis, Research Institute for

Symbolic Computation, J. Kepler University, Linz, Austria.
Wegschaider, K., 1997. Computer generated proofs of binomial multi-sum identities. Master’s

Thesis, Research Institute for Symbolic Computation, J. Kepler University, Linz, Austria.
Wilf, H., Zeilberger, D., 1992. An algorithmic proof theory for hypergeometric (ordinary andq)

multisum/integral identities. Invent. Math. 108, 575–633.
Zeilberger, D., 1991. The method of creative telescoping. J. Symbolic Comput. 11, 195–204.

	Telescoping in the context of symbolic summation in Maple
	Introduction
	Classical telescoping
	Indefinite sums
	Additive decomposition
	Implementation

	Creative telescoping
	When does Zeilberger's algorithm succeed?
	Efficient algorithms for computing the minimal Z-pairs
	A direct algorithm for the rational case
	Computation of a lower bound for the general hypergeometric case

	Implementation
	Construction of the minimal Z-pairs

	A comparison
	The Maple package hypergeometric

	Definite summation
	The conversion method
	Implementation

	The SumTools package
	Non-functional requirements
	Functional description
	Code structure and dependency
	Testing
	Remarks on the package

	Acknowledgements
	References

