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Abstract

This paper is an exposition of different methods for computing closed forms of definite sums. The
focus is on recently-developed results on computing closed forms of definite sums of hypergeometric
terms. A design and an implementation of a software package which incorporates these methods into
the computer algebra system Maple are described in detail.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Symbolic summation; Software design; Telescoping sums; Maple; Zeilberger’'s algorithm; Closed
form; Hypergeometric terms

1. Introduction

In order to compute closed forms of definite sums, one can apply one of at least
three methods: thelassical telescoping methpthe creative telescoping methpar
the conversion methadThe classical telescoping method is based on the computation
of an anti-difference of the input summanfid or on the construction of an additive
decomposition of'; the conversion method uses hypergeometric series as an intermediate
representation.

The creative telescoping method is principally based on Zeilberger's algorithm
(Zeilberger 1991). This method has proven itself to be a very useful tool for com-
puting closed forms of definite sums of hypergeometric terms which occur in many
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parts of mathematics including combinatorics, probability, number theory, and analysis
of algorithms. Regardless of the extensive work on, or related to Zeilberger’s algorithm
(Wilf and Zeilberger1992 Chyzak and Salvy1998 Chyzak 2000, there still exist many
interesting problems arising from the algorithm, and a number of them were not considered
or solved in the “classics”.

In addition to providing an outline of the three methods, this paper also includes a
summary of some recent resultsAlgramov(20023, Abramov(20028, Abramov and Le
(2002 andLe (2001 which supply a theoretical foundation as well as algorithms to
overcome, or at least alleviate, two key problems of Zeilberger's algorithm: (a) the
limitations in the domain of applicability of Zeilberger's algorithm, and (b) the efficiency of
the algorithm. The main focus of the paper, however, is on the design of a software package
which provides various tools, based on the above-mentioned three methods, for computing
closed forms of indefinite and definite sums. For definite sums of hypergeometric
terms, the design starts with the modutelescopers for computing the minimal
Z-pairs of hypergeometric termaipramov et al.20023. This module forms a component
of the moduleHypergeometric (Abramov et al. 2001), a toolbox for working with
hypergeometric terms in general, and for computing closed forms of indefinite and definite
sums of hypergeometric terms in particular. The modiygergeometric, together
with the modulesIndefiniteSum and DefiniteSum, form the main components of
the modulesumTools (Abramov et al. 2002B, a symbolic summation toolbox in Maple
(Monagan et a).20039).

The organization of the paper is as follows. We discusSéttion 2the classical
telescoping method, and show the design of the mofindefiniteSum for computing
the anti-differences of various classes of summands. The first paBeofion 3is
essentially the work described Abramov et al(20023. It is devoted to the design of the
combination of algorithms for computing the minin&pairs of hypergeometric terms. An
implementation based on this design results in the motedescopers. A comparison
between this module and other related software packages is also given. The functions in
the moduleTelescopers form a component of the moduligpergeometricwhichis the
focus of the second part &ection 3 In Section 4we discuss the conversion method, and
show the design of the modubef initeSun for finding closed forms of definite sums.

The last sectionSection 5 provides the design and functional descriptions of the package
SumTools. This package encompasses all the modules described in previous sections.

This paper provides a substantial extension of a previous version of this paper
as presented at ICMS 2002Alframov et al, 20023. First, the paper puts that work
in the context of a specific method for computing closed forms of definite sums of
hypergeometric terms, namely the creative telescoping method. Secondly, the paper
includes descriptions of the design and implementation of two well-known methods: the
classical telescoping method, and the conversion method, as well as shows the combination
of the three methods. The end result is the software pacRag®ools, a symbolic
summation toolbox in Maple.

Symbolic summation is a vast research area in computer algebra. It is necessary
to point out that our software package currently does not include implementation of
all known algorithms. Various software packages on summation have been developed
(mainly in Maple and Mathematica). They include the work on summation in difference
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fields (Schneider2001), multivariate hypergeometric summatiowégschaider1997,
g-hypergeometric summationB@ing and Koepf 1999 Koornwinder 1993 Riese
1995, bibasic, multibasic and mixed hypergeometric summatidtiege 1997
Bauer and Petkaek 1999 and tools for manipulation ofgf)hypergeometric series
(Gauthier 1999 Krattenthaler1995.

Throughout the papei is a field of characteristic zerd; is the field of complex
numbers(Q is the field of rational number%, andN denote the set of integers and non-
negative integers, respectively. The symtls Ex denote the shift operators with respect
ton andk, respectively defined b, T (n, k) = T(n+1, k), andExT (n, k) = T(n, k+1).
Note that both univariate and bivariate functions will be considered.

2. Classical telescoping

For a given functionT (k) over K, the problem ofindefinite summatiorasks if
there exists a functioii (k) over K, or over some suitable extension &f such that
(Ex — 1)G = T, and to compute such@, provided that it exists. The computed function
G is called aranti-differenceof T. Note thatG is unique up to any functio@ (k) such that
Ck+1) =C(k).

Consider the definite sum

b
> Tk, a<b b—aeN. (1)
k=a

If an anti-differences (k) of the summand (k) can be computed, then by writing odi) (
in full, we have

b b
2 TR =) (Gk+1-Gk)=Gb+1-G@.
k=a

k=a

In this case, we have computed a closed form Bf sing the classical telescoping
method by first computing an anti-differen@k) of the summandr (k). If either the
non-existence within a class of functions of an anti-differe@ctor the summand is
proven, or it is not known how to compute suckeathen a plausible approach is to apply
an algorithm which solves the additive decomposition problem to decoripiosthe form
T(k) = (Ex — 1)T1 + T2 whereTs is simpler tharl in some sense. Then the application
of the classical telescoping method(tex — 1) T1 results in

b b
Y TR =Tib+1) —Ti@ + Y _ Tak).
k=a

k=a
2.1. Indefinite sums

There are different algorithms for computing anti-differences for different classes of
summands. Lafon’s survey dfon, 1983 includes treatments for polynomials, rational
functions, hypergeometric terms, and indefinite summation using extensions of function
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domains. In addition to the above classes, the following methods can also be included in
the set of tools for solving the indefinite summation problem:

(1) Koepf’'s extensionKoepf, 1999 of Gosper’s algorithmGosper 1977 to j-fold
hypergeometric terms.

(2) The extension of Gosper’s algorithm as describdedtkowsek et al(1996 Chapter
5) to handle sums of hypergeometric terms.

(3) The method of accurate summation as presente&bimramov and Hoei(1999 to
handle functions whose minimal annihilators can be computed.

2.2. Additive decomposition

For a given functionT (k), an algorithm which solves the additive decomposition
problem (ADP) constructs two functiog(k) and T2 (k) such that

T(K) = (Ex — DT(K) + T2(k) )

where T2 (k) is “simpler” thanT (k) in some sense. The functiodg(k) and T2(k) are
called thesummableand thenon-summablgarts of T (k), respectively. It is important
that any algorithm which solves the ADP should guarantee that if the input furittion

is summable, then the computed non-summable pak) returned from the algorithm
should be identically zero. It is also desirable thatk) is in some sense “maximal”, in
other words that ifT2(K) is given to that same algorithm solving the ADP, its summable
part should be identically zero.

Let T (k) be arational functionof k. Then the ADP forT was solved inAbramov
(1979 (see als®bramoy 1995 Paule 1995 Pirastu and Streh1995. The characteristic
property of the non-summable pari(k) is that its denominator has the lowest degree.
In this case, one can express the indefinite surii>gk) in terms of the digamma and
polygamma functions, and the problem of computing a closed form for the indefinite sum
of the input rational functio (k) is solved.

Let T(k) be ahypergeometric ternm k overK (or aterm for short). Recall that the
characteristic property of a terfn(k) is that the ratidl (k + 1)/ T (k) is a rational function
of k overK. This rational function, denoted ¢ (T), is thecertificateof T (k). A term
T (n, k) in two variablesh andk overK has two certificate§n(T) = T(n+1,K)/T(n, k)
andCk(T) = T(n,k+ 1)/T(n, k). They are named the-certificate and th&-certificate,
respectively. These certificates are rational functionsarfidk overK.

Definition 2.1 (Abramov and Petkaék 20018. Let R € K(k)\{0}. If there are non-
zero polynomialsfi, f2, v1, v2 € K[k] such that

() R=F-(ExV)/V whereF = f1/f2, V = v1/v2, and gcduy, v2) = 1,
(i) ged(fq, E fp) = 1forallh € Z,

thenF .- (ExV)/V is arational normal form (RNFpf R.

For every rational function one can construct an RMBramov and Petkaék 20018
which in general is not unique.

As presented iPAbramov and Petkaek (2001a 2002, the algorithm to solve the
ADP for a termT (k) constructs two term33(k), T2(k) such that 2) holds, and either
T, vanishes o€k (T>) has an RNF
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f1 Ex(vi/v2)
f2 (vi/v2)

with v of minimal degree. Any RNF afk(T>) of the form @) hasv, € K[k] of the same
minimal degree.

®3)

Theorem 2.1 (Abramov and Petka€k 20013. Let T(k) be a term and equalit{?) be
valid for some terms 1{k), T2(k). Suppose thats(k) £ 0. Let(3) be an RNF o€y (T2).
Then(2) is an additive decomposition of(K) iff for each irreducible p fromK[k] such
that p| vz, the following three properties hold:

PaEfplvz=h=0, Pbh:Elp|fi=>h<0, PcElp|lfa=h>0 (4

When working with terms in two variablas andk over C, we can considen as a
parameter, and hence can construct an additive decomposition with reskect to

T, k) = (Ex — 1) T1(n, k) + T2(n, k). (5)

If (3) is an RNF with respect tk of Cx(T2) with f1, f2, v1, v2 € C[n, k], then for each
irreducible factorp € C[n, k] of vp, properties 4) hold. HereK is C(n), and K(k) is
C(n, k).

2.3. Implementation

The functions for computing indefinite sums are grouped together into the package
IndefiniteSum:

> print(IndefiniteSum);

module()

export Polynomial, Rational, Hypergeometric, AccurateSummation,

Indefinite, AddIndefiniteSum, RemovelndefiniteSum;
description “indefinite sums”;
end module
The diagram inFig. 1 provides the classes of summands the package can handle, the

corresponding algorithm which handles each class, and the ordering of these algorithms.
They include the classes of polynomials, rational functions, hypergeometric teifiois,
hypergeometric terms, and functions for which minimal annihilators can be constructed,
e.g., d’Alembertian terms. The main functidmdefinite which computes an indefinite
sum of a given input expression, is a combination of the algorithms handling these
classes. The two functionaddIindefiniteSumRemovelndefiniteSuprovide a library
extension mechanism which allows the addition and removal of closed forms of indefinite
sums which the existing algorithms cannot yet handle (a modified structural pattern-
matching approach is employed). Currently the summands that can be handled in this
way include expressions containing the harmonic function, the logarithmic function,
the digamma and polygamma functions, as well as the sine, cosine and exponential
functions.
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1

Extension Mechanism

‘ Abramov’s | | Abramov & Petkovsek’s

Koepf-Gosper's ‘ Abramov & Hoeij’s

i G(k) ; Gk)+ %Tik)

Fig. 1. Indefinite sum: a flowchart.

Example 2.1.
> T := binomial (k/2+n,n)*2"(-n);
T = 2—”<k/2+ ”),
n
SinceT is a 2-fold term ink, i.e., T(k + 2)/T (k) is a rational function ok, Koepf’s
extension to Gosper’s algorithm is used:

> Sum(T,k) = Hypergeometric(T,k);

k/24n\ 1 __.( (k/2+n k/2+1/2+n
Zz ( )_2(n+1)2 <k< o >+(k+1)( o ))

Example 2.2,
> T := k™2/binomial (2xk,k)/ (k" 2+3xk+2) ;
k2
TR+ 3k+2) (%)

Although the termT is not summable, it is possible to apply the algorithm which solves
the ADP to express the indefinite sumTofn terms of the indefinite sum of a simpler term
T2 which is the non-summable part of

> Sum(T,k) = Hypergeometric(T,k);
k—1

3 k? __6k2—11k—12 =
k2 +3k+2) (%) 9k +1) (2|

k—1 .
457 + 250 i
+Xk: 54k + 1) gz(zws)‘
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Note that a minimal multiplicative representationTofs

k2 S
2(k+1)(k+2) Il:{ 22 +1)°

Example 2.3 (Abramov and Hoejj1999.
> T := 1/6%x((1/2+1/2%57(1/2)) "k-(1/2-1/2%5"(1/2) ) "k) "2;

(3 (Y)

The complete factored minimal annihilator fof can be constructed using
Abramov and Zima(1997, and the application of the method of accurate summation
(Abramov and Hoejj1999 provides a closed form for the indefinite sumTaf

> Sum(T,k) = AccurateSummation(T,k);

m((C-(59)

2k k
11 1-/5 1 3++5
= E(_l) - E(l-l—\/g)( > ) - E(l—\/g)< 5 ) .

Note that instead of calling a specific routine corresponding to the given class of
summands as shown in the above three examples, calling the general iadgfiaite
should yield the same answers.

Example2.4. Let
> T := 27 (2*k-1) /k/(2*k+1) /binomial (2*k,k)+

> (k+1) ~2%4~ (k+1) / (k+2) / (k+3) ;
T — 1 22k—1(2k>_1 &4‘“1
T k(Zk+1) k k+2)(k+3)

SinceT is a sum of terms, the extension of Gosper’s algorithm describedtkowsek et al.
(1996 Chapter 5) is used:

> Sum(T,k) = Indefinite(T,k);

_ 1 2")_1 kD2
Z(k(2k+1)2 <k HCE T

k
-1
122k—1<2k> n k-1 4+

~ Kk k 3k + 2)
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Example 2.5.
> T := sin(k)*cos(k+1)-1n(2*k);

T = sin(k) cogk + 1) — In(2k).

Since knowledge about the functions,sins, and In is known via the library extension
mechanism, it is possible to compute a closed formT:

> Sum(T,k) = Indefinite(T,k);

> (sin(k) cogk + 1) — In(2k))
k

1k —kcog1)?+ cogk)? + 2kIn(2) sin(1) + 2 In(I"(k)) sin(1)
T2 sin(1) '

Consider the problem of computing an anti-difference of the hyperbolic functioedinh
with respect t:

> Indefinite(sinh(ax*k),k);
> sinhak)
k

The use of the library extension mechanism can help Maple solve the problem.
> sumsinh := proc(f,k) local a;

> if not type(f,’sinh’(linear(k))) or

> depends (op(£) /k,k) then

> FAIL

> else

> a := op(f)/k;

> -sinh(axk)/2+sinh(a)*cosh(a*k)/2/(cosh(a)-1)
> end if;

> end proc:
> AddIndefiniteSum(’sinh’,sumsinh);
> Indefinite(sinh(a*k),k);

1. sinh(3)
—E sinh(3k) + m cosh3k).

3. Creativetelescoping

The method of creative telescoping can be useful when the summana function of
the summation indek and of a parameten, i.e., T = T(n, k). If it is not clear how to
construct a functiors(n, k) such thatG(n, k + 1) — G(n, k) = T(n, k), then a possible
approach is to constructtalescopefor T, in other words an operator

L =a,(NEj +--- +a1(n)En + ag(n) (6)
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such that for the functioff (n, k) = LT(n, k) a corresponding functiof(n, k) can be
computed. That is,

LT(n, k) =G, k+1) — G(n, k). @)

This provides an opportunity to find closed forms of definite sum$ @f. k), where the
summation bounds can be functions which depend.ddowever, we are computing the
sum of T (n, k), instead ofT (n, k). For the definite sum of (n, k), the application of the

operatorzﬁg‘j(m to both sides of{) results in
v(n) v(n)
8, > TM+p. K+ +am Y Tk =HMm ®)
k=u(n) k=u(n)

whereH (n) = G(n, v(n) + 1) — G(n, u(n)). If u(n), v(n) are polynomials of degree 1 or
constants£ oo included), then by adding tbl (n) a fixed number of terms obtained from
T (n, k), one can transfornBj to a recurrence

a,nfn+p)+---+an) f(n+ 1) +ag(n) f(n) = H*(n), (9)

where f (n) = ZE(:”J(”) T (n, k). This recurrence can be used for findif¢n) (if we are
able to solve it), or to prove some propertiesfgh) by induction om.

The theory of creative telescoping was initially designedZiitberger(199]) for the
case when the summafdn, k) is a hypergeometric term. In this case, the operhtof
the form @) is an element fronC[n, E,], and the functiorG(n, k) such that ) holds is
a hypergeometric term. The theory includes an algorithm, called Zeilberger’s algorithm or
Z for short, for computing &-pair (L, G) for T. It was later generalized to holonomic
functions byChyzak and Salvy1998 and Chyzak(2000. It should be noted that even
for the hypergeometric case, the construction of Zhpairs can be very expensive. It is
therefore desirable that problems related to the efficiency bé solved.

3.1. When does Zeilberger’s algorithm succeed?

For a given ternT (n, k), if Z terminates in finite time givef as input, and succeeds
in computing aZ-pair for T, then we say thatZ is applicableto T", or “there exists a
Z-pair forT".

Definition 3.1. A polynomial «(n,k) € C[n, K] is integer-linearif it has the form
an+ bk+ cwherea, b € Z andc € C.

Definition 3.2 (Petkowsek et al, 1996 Wilf and Zeilberger1999. A term T(n,k) is
properif it can be written in the form

M e Y U

[Ti=1 I'(Bi(n, k)

whereq; (n, k), i (n, k) are integer-lineat, m € N, u, v € C, andP(n, k) € C[n, k].

P(n, k) (10)

The question of whethef is applicable to a terrt was not conclusively answered for
quite some time, although a sufficient condition was known via the “fundamental theorem”
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(Petkowsek et al. 1996 Wilf and Zeilbergey 1992 which states that i (n, k) is proper,
then there exists @-pair for T. The following theorem provides a necessary and sufficient
condition for the termination of.

Theorem 3.1 (Abramoy, 20023. Let T(n, k) be atermin n and k, an¢b) be an additive
decomposition of T with respect to k. L(8) be an RNF with respect to k 6k(T2) with

v2 € C[n, k]. Then a Z-pair for Tn, k) exists iff each factor of(n, k) irreducible in

C[n, k] is integer-linear.

For a given polynomiaF (n, k) € C[n, k], a decision procedure for the factorability of
f into integer-linear polynomials is describedAbramov and Lg2000. This procedure
does not require a complete factorizationfoiinto irreducible factors.

3.2. Efficient algorithms for computing the minimal Z-pairs

Let T(n, k) be a term. In this section we assume tl#ais proven applicable td .
The algorithm uses an item-by-item examination on the opdef the telescopersg. It
starts with the value of O fop and increasep until it is successful in finding &-pair
(L, G) for T. Since the computed telescoper is of minimal possible order, it is called the
minimal telescoper, and the comput&dpair is called thaminimal Zpair. Note that it is
not necessarily true that the recurren@edbtained by summing both sides @) pverk is
of minimal possible ordeRaule and Schori1995.

Let p be the order of the minimal telescoper for then Z simply wastes resources
trying to compute &-pair where the guessed orders of the telescopers are less.than

For the case wher& is also a rational function oh and k (the class of rational
functions is a proper subset of the class of terms), there exists a direct algokighm (
2001, 2003 which constructs the minima-pair for T efficiently without using item-by-
item examination. For the case whérds a non-rational term, there exists an algorithm
(Abramov and Le2002 which computes a lower boundfor the order of the telescopers
for T. This helps avoid the time to compute a telescoper of order lesgithan

3.2.1. Adirect algorithm for the rational case

Let T(n,k) € C(n, k). Consider an additive decomposition bfwith respect td of
the form ). First one constructs a special representation for the non-summabTe part
stated in the following theorem.

Theorem 3.2 (Le, 200]). Set

rij (n)
2 gg(a{'n"‘bik“l‘ci)J’ahble ,bi > 0,gcda;, by) ,ceC, (11)

rij (N) € C(n). Then B(n, k) can be represented in the form

M1F1+"'+ MSF57 (12)
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where each M € C(n)[Ep, Ek, Ek‘l], each F = 1/(ajn + bk + ¢;)™ is such that
ai,bj € Z,by > 0,gcda, b)) = 1,¢; € C,m; € N\{0}, and for all i # |, at least
one of the following four relations is not satisfied:

mj = mj, a = aj, bizbj, Ci —Cj € Z\{0}.

To can be written in the form1(l) since Z is assumed to be applicable Ta Once the
representation12) is constructed, one can compute the minimal telescopers for each
M; Fi € C(n, k) directly and efficiently. The minimal-pair for T2(n, k), and subsequently

for T(n, k), can then be constructed using least common left multiple computation. This
direct algorithm is in general more efficient than the origifial

3.2.2. Computation of a lower bound for the general hypergeometric case

Let T(n,k) be a non-rational term. Consider an additive decompositiofi afith
respect tak of the form 6). Since the minimal telescopers forand its non-summable
part T, are the same, the focus is shifted to computing a lower bound for the order of the
telescopers foffz. Let an RNF with respect tk of Ck(T2) be of the form 8). For each
irreduciblep such thatp | vz, the three propertieRa, Pb, Pcin (4) hold.

Definition 3.3 (Abramov and Le2002. Let M € CI[n, E,] be such thatMT, # O,
and there exists an RNF’(ExV'/V"), V' = v} /v, of Ck(MT2) such that each of the
irreducible factors of’, does not have at least one of the three propePiée®b, Pc. Then

M is acrushing operatofor T>. The minimal crushing operator is a crushing operator of
minimal order.

It is simple to show that il is a telescoper foff,, thenL is also a crushing operator
for To. Hence, the problem of computing a lower bound for the order of the telescopers
for T, is reduced to the problem of computing a lower bound for the order of the minimal
crushing operator fof.

Theorem 3.3 (Abramov and Le2009. Let Cx(T2) have an RNF with respect to
k F(ExV)/V ofthe form(3), f1, f2, v1, v2 € C[n, k],and D= di(n, k) /d2(n, k), d1, d2 €
CIn, k], be such that,(T2) = D(E,V)/V. Let there exist a crushing operator fop of
order p. Then for each integer-linear factor p o, deg, p = 1, there exists an integer h
such that

ENp| Env2- E2vp--- Efvp-dp - Endy--- EZ 1. (13)

As a consequence, iy is the minimal positive value gf such that there exists an h
satisfying(13), then the order of any crushing operator fop & not less tharp =

maXp|v, Lp-

Since Z is assumed to be applicable to the input tefin, k), it follows from
Theorem 3.1that the polynomiab, € C[n, k] factors into integer-linear polynomials.
By Abramov and Petkaek (20019, the polynomiald, € C[n, k] in Theorem 3.3also
factors into integer-linear polynomials. An algorithm, callemlverBoundwhich realizes
Theorem 3.3s described ilAbramov and Lg2002. Once each of the two polynomials
v2, d2 is written as a product of integer-linear polynomials (this does require a complete
factorization of monic univariate polynomials into irreducible factors, seg2001),
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Direct Algorithm H(L,G)

Fig. 2. Algorithms for computing minimaZ-pairs.

the algorithm is reduced to solving bivariate linear diophantine equations, a very
inexpensive operation.

3.3. Implementation

3.3.1. Construction of the minimal Z-pairs

The algorithms presented in this section, when combined with the originpfovide
us with a design of a group of functions for computing minirgapairs for terms. The
diagram inFig. 2 shows a sketch of the design. In our implementation, this group of
functions forms the modul@elescopers:

> print(Telescopers);

module()

export AdditiveDecomposition, IsZApplicable, ZpairDirect, LowerBound,
Zeilberger, MinimalZpair;

option package;

description “Algorithms for computing minimakZ-pairs for terms”;

end module

The exported variables indicate the functions that are accessible to users. They have the
following descriptions:

(1) AdditiveDecompositiofiT, k) computes an additive decomposition of the t&rrm
k. The output is a list of two elemen(3;, T2] representing the two termig, T, in
an additive decomposition df;

(2) IsZApplicable(T, n, k) returnstrue if Z is applicable to the ternT (n, k), false
otherwise;

(3) ZpairDirect (R, n, k, Ep) computes the minimakZ-pair for the rational function
R(n, k) using the direct algorithm. The output is a list of two elementsG]
representing the minimat -pair (L, G) for R, or an error message if it is proven
thatZ is not applicable tdR;

(4) LowerBound(T, n, k) returnsu € N which is the computed lower bound for the
order of the telescopers for the tefingn, k), or an error message if it is proven that
Z is not applicable td;
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(5) Zeilberger (T, n, k, En) returns a list of two elementgL, G] representing the
minimal Z-pair (L, G) for the input termT (n, k). This is an implementation of the
original Z. Note that an upper bounalfor the order of the telescopers forn, k)
needs to be specified in advance (the default value is 6). The function returns an error
message if no telescoper of order less than or equakixists.

The main function of the module iMinimalZpair. It has the calling sequence
“MinimalZpair (T, n, k, Ey)” where T is a term inn andk, and E, denotes the shift
operator with respect ta. This function follows the design as sketchedFigy. 2. For
an input ternil (n, k), the execution steps can be described as follows:

1. determine the applicability & to T;
2. ifitis proven in step 1 that Z-pair for T does not exist, return the conclusive error
message “there does not exist gpair for T”; Otherwise,

a. if T is a rational function oh andk, apply the direct algorithm to compute the
minimal Z-pair for T;

b. T is a non-rational term. First compute a lower bouyndor the order of the
telescopers foll . Then compute the minimal-pair using the originalZ with
w as the starting value for the guessed orders.

For case 2b, letTy, T2) be an additive decomposition ®f with respect tk. Since the
non-summable paiff, is simpler tharT in some sense, we first appB/to T, to obtain the
minimal Z-pair (L, G) for T,. It can be shown thaiL, LT1 + G) is the minimalZ-pair
for the input termr .

Example3.1. This example is a comparison between the origigaland the direct
algorithm (case 2a oMinimalZpair). The test samples are the same as those used in
Example 5 inLe (2001). Three sets of test6S, S, S3), each of which consists of 20
rational functions oh andk, were randomly generated. Each rational function is generated
to be of the form 12), but is given to the algorithm with numerator and denominator in
expanded form. We rallinimalZpair, Zeilberger(denoted byM and Z respectively) on
these tests, and collected resource requiremews.also enforced a limit of 2000 s on
each input rational function in the tests. Note that we only recorded the time and space
requirements for the tests that ran under this time limit.

Table 1shows the time and space requirements for t8st$ andSs.

Example 3.2. Consider the term

1 2n
Tk =——().
(.1 nk+1<2k>

It takes LowerBound0.62 s and 3045 kB to return the error message “Error, (in
LowerBound) Zeilberger’s algorithm is not applicable”. The function recognizes that the
polynomialva(n, k) in Theorem 3.1is (nk 4+ 1) which does not factor into a product of
integer-linear polynomials, and returns the conclusive answer quickly. On the other hand,

1 Al the reported timings were obtained on a 400 MHz SUN SPARC SOLARIS with 1 GB RAM.
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Table 1
Time and space requirements fdmimalZpair andZeilberger
Completed Timing (s) Memory (kB)
M Z M z M z
S 20 15 12.15 3127.84 54,159 8,095,930
S 20 18 12.43 2635.94 54,653 7,873,146
S 20 0 959.07 - 3,864,026 -

it takes Zeilberger 33.95 s and 166,396 kB to return the error message “Error, (in
Zeilberger) No recurrence of order 6 was found”. The function does not knowZif a

pair for T exists. It tries to compute one and returns an inconclusive answer. Since there
does not exist &-pair for T, the higher the value of the upper bound for the orddr &f

set, the more time and memory are wasted.

Example 3.3. Forb e N\{0}, j € {1, 3}, let

1 1
T (nk—=1D(n—=bk—2)J2n+k+3)!’ T2 = (n—bk—2)2n+k +3)!"
Consider the ternT (n, k) = (Ex — 1)T1(n, k) + T2(n, k). This example is a comparison
betweerzeilbergerand case 2b dflinimalZpair. The computed lower bound for the order
of the telescopers is, while the order of the minimal telescopemig- 1. Letu € N be the
starting value for the guessed order of the telescopers. Recall that the fubetiioerger
appliesZ to the input termT with © = 0, while MinimalZpair appliesZ to the non-
summable ternT, in the decompositiord) with u = b. Table 2shows the time and space
requirements. As one can easily noticebad/orj increase, the relative performance of
Zeilberger(compared taMinimalZpair) quickly worsens.

T1

3.4. A comparison

There exist different Maple implementations & such asZeil in the EKHAD
package Retkowsek etal. 1999, sumrecursionin the sumtools packageKéepf,
1998, SummandToRein the HYPERG packageGauthier 1999. A Mathematica
implementation (the functiorb) is described iflPaule and Schorfi995. These programs
are in principle equivalent to the prografeilbergerin the moduleTelescopers. They
do not include an implementation of the criterion for the applicabilitgof

For the case where the input is a rational function, a program suzb &sccepts an
input if the irreducible factors of the denominator are integer-lineBeéule and Schorn
1999. This is equivalent to the condition that the input be a proper ternT H&orem 3.1
such a program prevents the computation @fpair when such a pair exists. Note that we
also implemented in the progravinimalZpaira direct and efficient algorithm to compute
the minimalZ-pairs.

For the case where the inplit(n, k) is a non-rational term, all the aforementioned
programs apphZ directly toT. On the other handvlinimalZpair first computes a lower
boundu for the order of the telescopers (a fairly low-cost operation), and then agpties
the termT, in the additive decompositiol)( usingu as the starting value for the guessed
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Table 2
Time and space requirementshinimalZpair andZeilberger
Timing (s) Memory (kB)
j b MinimalZpair Zeilberger MinimalZpair Zeilberger
1 6.49 5.35 27,838 24,702
2 8.34 34.64 33,066 142,889
1 3 11.13 124.53 44,233 535,736
4 14.46 570.02 56,410 1,882,730
5 25.79 2999.22 97,506 6,536,309
1 14.64 16.40 62,566 73,830
2 17.24 228.59 68,304 770,529
3 3 20.15 1,286.51 78,701 3,074,051
4 24.08 8,771.08 91,844 10,766,646
5 38.60 77,663.68 139,823 33,423,168

orders of the telescopers (note that the existencedpair is guaranteed). The minimal
Z-pair for T can then be easily obtained. Experimentation shows that this proposed
approach helps expedite the construction of the minifphirs.

3.4.1. The Maple package hypergeometric

The packagélypergeometric provides tools for working with terms in general, and
for finding closed forms of indefinite and definite sums of terms in particular. It includes
theTelescopers package.

> print (Hypergeometric) ;

module()

export IsHypergeometricTerm, AreSimilar, PolynomialNormalForm,
RationalCanonicalForm, MultiplicativeDecomposition,
AdditiveDecomposition, Gosper, ExtendedGosper, Zeilberger,
ZeilbergerRecurrence, IsZApplicable, KoepfGosper, KoepfZeilberger,
ExtendedZeilberger, ZpairDirect, LowerBound, MinimalZpair,
ConjugateRTerm, WZMethod, IndefiniteSum, DefiniteSum;

option package;

description “Tools for working with hypergeometric terms”;

end module

The module consists of three main components.

(1) The first component includes functions for computing normal forms of
rational functions and of term&olynomialNormalForm, RationalCanonicalForm,
MultiplicativeDecomposition and AdditiveDecompositian See Abramov et al.
(2007 for functional specifications of these functions.

(2) The second component includes functions for indefinite and definite sums of
terms. For indefinite sums, they am®osper, KoepfGosper, ExtendedGosper
and AdditiveDecompositign and are described irSection 2.3 For definite
sums, in addition to the functions as describedSaction 3.3.1 the function
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ZeilbergerRecurrencs also included in the set of tools for definite sums of terms.
ZeilbergerRecurrencéT, n, k, f,|...u) constructs the induced recurrence for the
definite sumf (n) = ZE=| T(n, k) whereT is a term inn andk.

(3) The functions in the first two components, when combined with the existing
functions of the Maple system, allow one to compute closed forms of indefinite and
definite sums of terms. The two functions in the third componentratefiniteSum
and DefiniteSumIndefiniteSums described inSection 3.3.1DefiniteSurrhas the
calling sequencPBefiniteSungT, n, k, | ... u). The function tries to compute a closed
form of the definite sunmf (n) = ZE=| T(n, k) whereT (n, k) is a term inn andk.

The four types of definite sums supported are

un+v 00 un+v
> Tk, Y Tk, Y Tnk,
k=rn+s k=rn+s k=—00

o0
Z T(n,k),r, s UveZ.

k=—00

The diagram irFFig. 3shows the combination of algorithms for computing closed forms of
definite sums of terms.

The combination ofZ and Petkosék’s algorithmHyper (Petkowsek 1992 plays an
important role in the study of definite sums of terms. For a given f€m k), we are
interested in knowing if there existscdosed formof ZES;(n) T(n, k). By closed form,
we mean the sum can be expressed as a linear combination of a fixed number of terms.
First, the application of to T (n, k) yields a linear recurrence operatore C[n, E] of
the form @) and a termG(n, k) such that relation?) holds. By summing both sides of
(7) over a specified range &f we obtain in general an inhomogeneous linear recurrence
equation with polynomial coefficients of the for®)( As an example, let

un4-v
fm= Y Tk, rsuvel
k=rn+s

Then @) becomes

0
Y amf(n+i)=GMm.un+v+1) -G, rn+s)
i—0

P rn+s—1 und-v4-ui
+Za(n)( Yo To+ik+ T(n—|—i,k)). (14)
i=0

k=rn+s+ri k=un+v+1

Hypernow comes into play (see alstoeij, 1999. If the recurrenceq) has a solutiorf (n)

which is a linear combination of a fixed number of termsjrthenHyperwill find such

a solution, otherwise it returns the message “No such solution exists”. It is not surprising
that closed forms of many sums with binomial coefficients as summar@euid (1972
andRiordan(1968 can be obtained by first usirg, and therHyper.
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— Hoeij’s
T(nk) . — PN , )
Minimal Z-pair ‘——(L,G)'.’/\)Y— —’—ﬂ/iul.‘tl:\'}?)y—?/ ftn) /
. pa /

[N = Abramov & Zima's | N

/ blny /

/ /
2 Tnk) /
”/ k:a(n)( /

Fig. 3. Definite sums of hypergeometric terms.

Example 3.4 (Riordan 1968 Ex. 11, p. 164). LeT be the hypergeometric term
> T := binomial (2%n,2*k) "2;

2 2
T := 3 .
2k
Then
> Sum(T,k=0...n) = DefiniteSum(T,n,k,0...n);
2
n 1 _1\n 1
i(zn)z_}4 (F(2n+2)ﬁ+( "7 (n+3) )
o \X 2 ﬁf(n+%)F(n+1)
Note that we carenlargethe domain of closed forms by including d’Alembertian
terms—a d’Alembertian term can be described as nested indefinite sums of hypergeometric
terms, or equivalently, as a term which is annihilated by a product of first-order difference

operators (seAbramov and Zimal99§. The functionDefiniteSuntan handle this case
as well.

4. Definite summation

In addition to the classical and the creative telescoping methods, it is a standard
practice to have a front-end, principally based on a pattern-matching approach, to recognize
certain specific types of definite sums. We also employ another quite powerful method:
the conversion method which is a combination of both algorithmic and pattern-matching
approaches.

4.1. The conversion method

For a given definite sum, the conversion method consists of two steps:

(1) Conversion of the given definite sum to an expression involving hypergeometric
series. See, for example, the hypergeometric series lookup algorithm from

Petkowsek et al (1996 Chapter 3).
(2) Conversion of the hypergeometric series produced in step (1) to standard special
and elementary functions. Examples of these standard functions include Bessel
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T(n,k)

Telescoping Creative Telescoping pFq -> std func.

summable? summable?

bin)
G(n) ¥ Tnk)
k=a(n)

Fig. 4. Definite sum: a flowchart.

functions, Legendre functions, and elliptic integrals. The process is a combination
of the algorithmic approach as developedinach(1996 and a pattern-matching
approach from a hypergeometric database suéhragnikov et al(1990.

4.2. Implementation

The packagbef initeSum consists of functions for computing closed forms of definite
sums:

> print (SumTools:-DefiniteSum) ;

module()

export Telescoping, CreativeTelescoping, pFqToStandardFunctions, Definite;
description “definite sums”;

end module

The exported functionJelescoping CreativeTelescoping, pFqToStandardFunctions
compute closed forms of definite sums using the classical telescoping method, the creative
telescoping method, and the conversion method respectively. The main fubefioiteis
the combination of these methods with the ordering as showigird.

Example 3.4llustrates the use of the creative telescoping method for computing closed
forms of definite sums. We now provide some examples of definite sums whose closed
forms are computed using other methods.

Example4.1. Let
> T := (2+k) "~ (k-2)*(1+n-k) " (n-k)/(k!'*(n-k) ) ;
2+ K 21 +n—k"*
T :=
k!(n — k)!

Consider the problem of computing a closed formfah) = Y \_, T. The front-end
(based on a pattern-matching approach) recognizes that the summand is of Abel’s type,
and hence a closed form fdr(n) is computed as:
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> Sum(T,k=0...n) = Definite(T,k=0...n);

i:Q+m“%1+n—mmk_}@+m”_}@+mml
~ ki(n — k)! 4 nl 6 (n— 1)
Example4.2.

> T := binomial (2*n-2*k,n-k)*2" (4*k)*
((2xk)* (2%k+1)*binomial (2%k,k)) ;

_1 By
T 2kk+ D)

SinceT is summable with respect tq a closed form oy _;_, T can be computed using
the classical telescoping method:

> Sum(T,k=1...n) = Definite(T,k=1...n);
o1 ()2, en-0(@E)
= 2k(2k+ 1) (F) 2n+1

Example4.3. Let

> T := 2°(2%k)/Pi" (1/2) *GAMMA (k-n) *GAMMA (k+n) /GAMMA (2xk+1) *z"k;
2Pk —nI'(k+n)Z
o VT (2k+ 1)

In order to compute a closed form df(n) = Y 2, T, the functionDefinite uses
the conversion method by first convertirfign) to (—./7 /(sin(zn)n)2F1(n, —n; 1/2; 2),
which is then converted to standard functions:

> Sum(T,k=0...infinity) = Definite(T,k=0...infinity);

o 22X (k—nI(k+nZ¢ _ /7 cog2narcsin/2)) csaxn)
JaT(2k+ 1) B n '

k=0

5. The SumTools package

Computing a closed form of a sum is one of the basic operations in general computer
algebra systems such as Maple, Mathematica, Macsyma, MuPAD. We propose in this
section a re-design of summation in Maple. The focus is on a smooth integration of
independent blocks of code, and on the implementation of recently-developed algorithms.
Its design is based on four requiremenggmplicability, simplicity, extensibility and
performance
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5.1. Non-functional requirements

1)

)

®3)

(4)

Applicability. The package should cover a wide range of (potentially overlapping)
algorithms which handle various classes of summands. If a sum is both (1) present
in some form in a standard text covering summation, and (2) can be summed by a
published algorithm, then this package should succeed in computing a closed form
for that case.

Simplicity. The output of the main entry points for summati@eginiteSummation
andIndefiniteSummatigrior the package should be as simple as possible. Simplicity
is expected to be defined externally to this package, but also to be a concept
compatible with summation.

Extensibility. New algorithms should be easy to incorporate into this package. As
well, choosing the ordering in which to insert new algorithms should be objectively
decidable. For example, assuming algorithms are known for them, it should be simple
to add new code for implementing the many formulas that appear in large collections
such as those iGould (1972, Riordan(1968 andPrudnikov et al(1990.
Performance.The algorithms for any given class of summands should be the
most efficient ones known. Performance benchmarks to verify that each class of
summands is summed in the appropriate complexity class need to be built.

Note that a number of these requirements are opposites. For example, simplicity and
performance are often incompatible. Thus compromises have to be made to balance out
these requirements against one another. These natural-sounding requirements actually
have some deep implications for various aspects of the implementation. For instance,
extensibility and applicability imply a high level of uniform modularization of the
algorithms, as well as a control structure which is quite extensible. In other words, although
operationallyFigs. 1and4 describe the current control flow, the actual control structure
cannot be so hard-coded. Another pointis that there needs to be a piesige philosophy
carefully documented, so as to guide future developers in how to decide objectively where
their new algorithms should be inserted into the existing scheme.

5.2. Functional description

The packag8umTools exports three functions and three sub-packages:

> print(SumTools);

module()
export Hypergeometric, IndefiniteSum, DefiniteSum,

IndefiniteSummation, DefiniteSummation, Summation;

local Preprocess, Tools, LimitRootOf, Floats;
option package;

description “summation tools”;

end module

The three exported functions arkdefiniteSummatignDefiniteSummation and
SummationindefiniteSummationf, k) computes a closed form of an indefinite sum of
f with respect td; DefiniteSummatiof, k = m...n) computes a closed form of the
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IndefiniteSum.mm Summation.mm DefiniteSum.mm
Preprocess.mm
IndefiniteSum DefiniteSum
Polynomial.mm FrontEnd.mm
Rational.mm Telescoping.mm
Hypergeometric.mm Hypergeometric CreativeTelescoping.mm
AccurateSummation.mm - pFqToStandardFunction.mm
= DefiniteSum.mm [
Indefinite.mm . Definite.mm
IndefiniteSum.mm
Extensibility Tools
Harmonic.mm ArgumentList.mm
Ln.mm FindSubs.mm
Polygamma.mm Singular.mm
SinCosExp.mm CheckEndPoint.mm

Fig. 5. SumTools package: code structure and code dependency.

definite sum off over the specified range...n of the summation indek; Summation
(f, k) or Summation( f, k = m...n) handles both indefinite and definite sums.

The sub-packagesindefiniteSum, Hypergeometric, and DefiniteSum are
described irSections 24, respectively.

5.3. Code structure and dependency

Fig. 5 shows code structure and code dependency of the padkageols. The
Preprocessfunction classifies the given sum into one of the two types (indefinite or
definite). Each type is handled by the corresponding independent sub-module. This
allows easy extensibility of functionalities. The integrability of the package as a whole is
shown by the dependency of the sub-moduligpergeometric provides functionalities,
while Tools provides various auxiliary tools t@ndefiniteSum and DefiniteSum;
Extensibility provides a library extension mechanismImdef initeSum which in
turn provides functionality tDefiniteSum.

5.4. Testing

The goal is to include as many tests from different sources as possible. We have prepared
a number of tests. Many of them are taken fréiould (1972 andRiordan(1968. For the
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indefinite case, 618 summands are tested: 30 polynomials, 60 rational functions, 477
hypergeometric terms, and 51 others used for accurate summation. For the definite case,
177 summands are used to test the three main methods.

5.5. Remarks on the package

We have presented in this section a design and implementation cfuthiBools
package. When the package is completed, the funcBammationis expected
to replace the current commansum in Maple. In terms of functionality, the
package includes algorithms for accurate summation and of additive decomposition of
hypergeometric terms for the indefinite case, as well as the integration of the sub-package
SumTools:-Hypergeometric and of the functiorconvert/StandardFunction@sed in
the conversion method) for the definite case. These algorithms are not implemented or not
incorporated in the curresum(as of Maple 9).

Although the code structure is new, we should stress that we re-use good pieces of
code written by various Maple developers throughout many years. Hence, this work is a
collective contribution of many Maple developers. Of equal importance, the design also
focuses on integrability and extensibility. This hopefully will help with the maintenance
and future development.
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