A New Polynomial Data Structure For Maple
SF U Roman Pearce Michael Monagan

Polynomial Representation Packed Monomials
Maple’s current representation for polynomials is a Our software (sdmp) uses a packed distributed format to achieve high
sparse sum of products: performance. Monomials are represented as machine integers.
9xy’z — 4y°2> — 6ay’z — 8a° — 5 iy = [6 32 1} — 00000110 00000011 00000010 00000001
degree: 6 exponents bits on a 32-bit computer

PROD7| x |1 |y |[3]z]|1]

e Monomial multiplication adds machine integers in C

(PRODS| y [3 [z | 2] e To divide monomials, we subtract and check for underflow
PROD7| x [1 |y | 2|2z 1] e Term ordering uses unsigned integer comparisons
|PROD3| x | 3 |
Poly DAG

sumit| ¢ [o[o |4f[é[6]¢[-8[5]1] Polynomials with integer coefficients have a new dag:

o : 9ry’s —dy’s* —6ay’s —8a® — 5
This is slow for large polynomials because: Yy Yy Yy
e common operations must examine every term SEQ4 | x [y | z |

(e.g. degree, set of variables, type checks) *
e cach monomial adds overhead to the system POLY 12| & |5131] 9 |5032| -4 |4121] -6 |3300] -8 |0000] -5 |

ial d out all : :
¢ MmONomia’s are Spreac Ot all over memory It uses graded lexicographical order. Polynomials will appear sorted.

e monomial operations are complicated

, , The maximum total degree is determined by the number of variables:
Maple also sorts polynomials by monomial address,

so whenever monomials are changed it must re-sort. # variables 32-bit max 64-bit max

2 1023 2097151

3 255 65535

Overhead of Maple’s Representation 4 64 4095
Multiply f = (1+2+y+2) andg = f +1 2 ?; 12??
Total time: 0.028 sec 7 15 255
8 7 127

type check

+ get variables

+ compute degree 0.005 sec (18%)
call sdmp C library 0.014 sec (50%)
build Maple result 0.009 sec (32%)

Many operations go from O(n) — O(1) :

indets(f) and has(f, x) look at the variables
degree(f) and lcoe ff(f) look at the first term
expand(f), normal(f), numer(f),denom(f) do nothing

type(f, polynom) knows it is a polynomial over Z
On sparse problems (and dense problems with dense ype(f, poly) poly

algorithms) the overhead can be over 97%. Overhead is 20x lower with this new data structure.

NSERC ~ ’
caswe Maplesoft =

MITACS

