The Erdős - Turán Conjecture

Frank Chu (NSERC Undergraduate Student Research Assistant) Supervisors: Professor Peter Borwein and Professor Stephen Choi

Introduction
A set $B \subset \mathbb{N}$ is called a basis of \mathbb{N} if every natural number can be written as a sum of two elements of B. Define the additive representation function of B on \mathbb{N} as

$$
r(B, n)=\#\left\{(x, y) \in B^{2}: x+y=n\right\}
$$

Then a basis set B is one that satisfy $r(B, n)>0$ for all $n \in \mathbb{N}$.
The Erdôs and Turán [1] conjecture states:
Conjecture 1 For any basis set $B, r(B, n)$ is unbounded.
Equivalently, for any set $B \subset \mathbb{N}$,

$$
\begin{equation*}
r(B, n)>0, \forall n \in \mathbb{N} \longrightarrow \limsup _{n \rightarrow \infty} r(B, n)=\infty \tag{1}
\end{equation*}
$$

The conjecture asserts that if we attempt to fill the naturals with a set through pairwise addition, then the number of repeats in the additive representation will grow without bounds.
It will be more convenient to use the following equivalent form of (1):

$$
r(B, n) \text { is bounded } \longrightarrow r(B, n)=0 \text { for infinitely many values of } n .
$$

Note that we do not write there exists some values of n for which $r(B, n)=0$, because if only finitely many n satisfy this, we can fill these holes without altering the boundedness of $r(B, n)$, thus producing a counter-example

Finite constructions
To analyze the conjecture, we first model it in its finite form, and construct finite bases to test the validity of the conjecture.

We make the following definitions:

- We call a set $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, where $0 \leq a_{1}<a_{2}<\ldots$,
a finite basis if $r(A, n)>0$ for all $n \leq a_{n}$.
- A basis A is a k-basis if $r(A, n) \leq k$ for all $n \in \mathbb{N}$.
- The set $E(k)$ contains all possible k-bases.

From these we gather 3 important observations:
(A) It is clear that $E(1) \subset E(2) \subset$
(B) Any finite truncation of a finite/infinite basis
must be a finite k-basis, for some k.
(C) Hence, any infinite bases B belongs to

$$
\Sigma=\lim _{k \rightarrow \infty} E(k)
$$

The significance here is that, every k-basis has $r(A, n)$ bounded, and thus, if the conjecture is true, (2) implies that
there are no infinite k-bases for any k

The Algorithm
To compute the sets $E(k)$, we define $E_{n}(k)$ as the set of all bases in $E(k)$ that has exactly n elements. Now,

Any set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \in E_{n}(k)$ is a finite, k-basis with n elements. Hence, by (B), its truncation $A \backslash\left\{a_{n}\right\}$ must be in $E_{n-1}(k)$.

So to compute $E(k)$, we first compute $E_{1}(k)$, then extend it do $E_{2}(k)$, etc. In the end, $E(k)=E_{1}(k) \cup E_{2}(k) \cup \ldots$

Note: The only finite basis with 1 element is $\{0\}$.
Given a set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \in E_{n}(k)$, we try to extend it by adding a_{n+1} - Recall that a finite k-basis satisfy $r(A, n)>0$ for all $n \leq a_{n}$.

- Clearly, $a_{n+1}>a_{n}$, for otherwise it would be discovered as a candidate earlier. - Also, since $A^{\prime}=A \cup\left\{a_{n+1}\right\}$ must also be a finite k-basis, we get:
a_{n+1} must be \leq the first element n for which $r(A, n)=0$.
The explanation is simple. Suppose $r(A, n)=0$ and we choose $a_{n+1}>n$. Since a_{n+1} is the only new element, we can make $r\left(A^{\prime}, n\right)>0$ only if there exist some a_{i} such that $a_{i}+a_{n+1}=n$. But this is impossible since $a_{n+1}>n$.

Thus, the largest possible candidate for n is $2 a_{n}+1$,
$\Longrightarrow \quad$ When extending $A, \mathrm{a}_{\mathrm{n}}<\mathrm{a}_{\mathrm{n}+1} \leq 2 \mathrm{a}_{\mathrm{n}}+1$.

```
ET-COMPUTE \((k)\)
    \(1 E(k) \leftarrow \emptyset\)
    \(E_{1}(k) \leftarrow\{\{0\}\}\)
    \(n \leftarrow 1\)
    while \(E_{n}(k) \neq\{ \}\)
    do \(E_{n+1}(k) \leftarrow \emptyset\)
for each \(A \in E_{n}\)
        do \(\triangleright\) Here we take \(A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\)
            for \(a_{n+1} \leftarrow a_{n}+1\) to \(2 a_{n}+1\)
            do \(A^{\prime} \leftarrow A \cup\left\{a_{n+1}\right\}\)
            if \(r\left(A^{\prime}, n\right)>0\) for all \(n \leq a_{n+1}\) AND
                \(r\left(A^{\prime}, n\right) \leq k\) for all \(n \leq 2 a_{n+1}+1\)
            hen \(E_{n+1}(k) \leftarrow E_{n+1}(k) \cup A\)
                if \(r\left(A, a_{n+1}\right)=\)
then break for
    \(E(k) \leftarrow E(k) \cup E_{n}(k)\)
```


Analysis

If the conjecture is true, then this algorithm will terminate for each k. i.e. $E_{n}(k)=\emptyset$ for some n.

While we do not know whether it will terminate for each k, we do know that the algorithm has complexity $O(M N)$ in the inner loop for each extension from $E_{n}(k)$ to $E_{n+1}(k)$, where M is the number of elements in $E_{n}(k)$, and N is the largest element in all of the sets in $E_{n}(k)$.

Results
The results for $E(3), E(4)$, and $E(5)$ were computed easily. However, the size of $E(6)$ is evidently too large for a single computer to handle. Hence, to compute $E(6)$, we used the power of Apple's Xgrid.
Xgrid is a software that turns a cluster of Macs into a supercomputer. It provides parallel computation by queuing multiple jobs and distribute them to the cluster when there are free resources.

For $E(6)$, we first computed $E_{6}(6)$, which has 65 elements, and we submit a job to Xgrid for each of these 65 elements, using it as the starting point of the search We then combine the results.

Results for $E(3)$:			
Total number of bases:	9		
Maximum non-empty level:	5		
Maximum element in all bases: 8			
Size of $E_{1}(3)=1$		Results for E (6):	
Size of $E_{2}(3)=1$		Total number of bases: $11,482,910,373$	
Size of $E_{3}(3)=2$ Size of $E_{(3)}=3$		Maximum non-empty level: 35	
Size of $E_{4}(3)=3$ Size of $E_{5}(3)=2$		Maximum element in all bases: 264	
Size of $E_{5}(3)=2$		Size of $E_{1}(6)=1$	
		Size of $E_{2}(6)=1$	
Results for $E(4)$:		Size of $E_{3}(6)=2$	
		Size of $E_{4}(6)=5$	
Maximum non-empty level:	12	Size of $E_{5}(6)=17$ Size of $E_{(6)}=65$	
Maximum element in all bases: 40		Size of $E_{7}(6)=287$	
Size of $E_{1}(4)=1$		Size of $E_{8}(6)=1,321$	
Size of $E_{2}(4)=1$		Size of $E_{9}(6)=6,343$	
Size of $E_{3}(4)=2$		Size of $E_{10}(6)=30,221$	
Size of $E_{4}(4)=5$		Size of $E_{11}(6)=139,151$	
Size of $E_{5}(4)=15$		Size of $E_{12}(6)=603,811$	
Size of $E_{6}(4)=38$		Size of $E_{13}(6)=2,426,694$	
Size of $E_{7}(4)=89$		Size of $E_{14}(6)=8,860,674$	
Size of $E_{8}(4)=122$		Size of $E_{15}(6)=28,978,826$	
Size of $E_{9}(4)=86$		Size of $E_{16}(6)=83,731,261$	
Size of $E_{10}(4)=38$		Size of $E_{17}(6)=211,235,073$	
Size of $E_{12}(4)=1$		Size of $E_{18}(6)=460,185,450$	
		Size of $E_{19}(6)=857,598,737$	
		Size of $E_{20}(6)=1,354,122,593$	
	Results for $E(5)$:		Size of $E_{21}(6)=1,797,582,753$
			Size of $E_{22}(6)=1,989,846,915$
Total number of bases:	6,335	Size of $E_{23}(6)=1,821,587,616$	
Maximum non-empty level:	14	Size of $E_{24}(6)=1,369,557,963$	
Maximum element in all bases: 52		Size of $E_{25}(6)=839,984,280$	
Size of $E_{1}(5)=1$		Size of $E_{26}(6)=417,713,111$	
Size of $E_{2}(5)=1$		Size of $E_{27}(6)=167,597,147$	
Size of $E_{3}(5)=2$		Size of $E_{28}(6)=53,944,794$	
Size of $E_{4}(5)=5$		Size of $E_{29}(6)=13,841,595$	
Size of $E_{5}(5)=17$		Size of $E_{30}(6)=2,817,369$	
Size of $E_{6}(5)=60$		Size of $E_{31}(6)=453,040$	
Size of $E_{7}(5)=201$		Size of $E_{32}(6)=57,203$	
Size of $E_{8}(5)=552$		Size of $E_{33}(6)=5,615$	
Size of $E_{9}(5)=1,100$		Size of $E_{34}(6)=412$	
Size of $E_{10}(5)=1,568$		Size of $E_{35}(6)=27$	
Size of $E_{11}(5)=1,580$			
Size of $E_{12}(5)=937$			
Size of $E_{13}(5)=285$			
Size of $E_{14}(5)=46$			

References

[1] P. Erdös and P. Turán. On a problem of Sidon in additive number theory, and on some related problems. J. London Math. Soc., 16:212-215, 1941

