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Results for E(6):
Total number of bases: 11,482,910,373
Maximum non-empty level: 35
Maximum element in all bases: 264

Size of E1(6) = 1
Size of E2(6) = 1
Size of E3(6) = 2
Size of E4(6) = 5
Size of E5(6) = 17
Size of E6(6) = 65
Size of E7(6) = 287
Size of E8(6) = 1,321
Size of E9(6) = 6,343

Size of E10(6) = 30,221
Size of E11(6) = 139,151
Size of E12(6) = 603,811
Size of E13(6) = 2,426,694
Size of E14(6) = 8,860,674
Size of E15(6) = 28,978,826
Size of E16(6) = 83,731,261
Size of E17(6) = 211,235,073
Size of E18(6) = 460,185,450
Size of E19(6) = 857,598,737
Size of E20(6) = 1,354,122,593
Size of E21(6) = 1,797,582,753
Size of E22(6) = 1,989,846,915
Size of E23(6) = 1,821,587,616
Size of E24(6) = 1,369,557,963
Size of E25(6) = 839,984,280
Size of E26(6) = 417,713,111
Size of E27(6) = 167,597,147
Size of E28(6) = 53,944,794
Size of E29(6) = 13,841,595
Size of E30(6) = 2,817,369
Size of E31(6) = 453,040
Size of E32(6) = 57,203
Size of E33(6) = 5,615
Size of E34(6) = 412
Size of E35(6) = 27

Results for E(5):
Total number of bases: 6,335
Maximum non-empty level: 14
Maximum element in all bases: 52

Size of E1(5) = 1
Size of E2(5) = 1
Size of E3(5) = 2
Size of E4(5) = 5
Size of E5(5) = 17
Size of E6(5) = 60
Size of E7(5) = 201
Size of E8(5) = 552
Size of E9(5) = 1,100

Size of E10(5) = 1,568
Size of E11(5) = 1,580
Size of E12(5) = 937
Size of E13(5) = 285
Size of E14(5) = 46

Results for E(4):
Total number of bases: 404
Maximum non-empty level: 12
Maximum element in all bases: 40

Size of E1(4) = 1
Size of E2(4) = 1
Size of E3(4) = 2
Size of E4(4) = 5
Size of E5(4) = 15
Size of E6(4) = 38
Size of E7(4) = 89
Size of E8(4) = 122
Size of E9(4) = 86

Size of E10(4) = 38
Size of E11(4) = 6
Size of E12(4) = 1

Results for E(3):
Total number of bases: 9
Maximum non-empty level: 5
Maximum element in all bases: 8

Size of E1(3) = 1
Size of E2(3) = 1
Size of E3(3) = 2
Size of E4(3) = 3
Size of E5(3) = 2

Results
The results for E(3), E(4), and E(5) were computed easily. However, the size of
E(6) is evidently too large for a single computer to handle. Hence, to compute
E(6), we used the power of Apple’s Xgrid.
Xgrid is a software that turns a cluster of Macs into a supercomputer. It provides
parallel computation by queuing multiple jobs and distribute them to the cluster
when there are free resources.

For E(6), we first computed E6(6), which has 65 elements, and we submit a job
to Xgrid for each of these 65 elements, using it as the starting point of the search.
We then combine the results.

ET-COMPUTE(k)
1 E(k)← ∅
2 E1(k)← {{0}}
3 n← 1
4 while En(k) 6= {}
5 do En+1(k)← ∅
6 for each A ∈ En(k)
7 do . Here we take A = {a1, a2, . . . , an}
8 for an+1← an + 1 to 2an + 1
9 do A′← A ∪ {an+1}

10 if r(A′, n) > 0 for all n ≤ an+1 AND
11 r(A′, n) ≤ k for all n ≤ 2an+1 + 1
12 then En+1(k)← En+1(k) ∪ A′

13 if r(A, an+1) = 0
14 then break for
15 E(k)← E(k) ∪ En(k)

Analysis
If the conjecture is true, then this algorithm will terminate for each k.
i.e. En(k) = ∅ for some n.

While we do not know whether it will terminate for each k, we do know that
the algorithm has complexity O(MN) in the inner loop for each extension from
En(k) to En+1(k), where M is the number of elements in En(k), and N is the
largest element in all of the sets in En(k).

The Algorithm
To compute the sets E(k), we define En(k) as the set of all bases in E(k) that has
exactly n elements. Now,

Any set A = {a1, a2, . . . , an} ∈ En(k) is a finite, k-basis with n elements.
Hence, by (B), its truncation A \ {an} must be in En−1(k).

So to compute E(k), we first compute E1(k), then extend it do E2(k), etc.
In the end, E(k) = E1(k) ∪ E2(k) ∪ . . ..

Note: The only finite basis with 1 element is {0} .

Given a set A = {a1, a2, . . . , an} ∈ En(k), we try to extend it by adding an+1.
- Recall that a finite k-basis satisfy r(A, n) > 0 for all n ≤ an.
- Clearly, an+1 > an, for otherwise it would be discovered as a candidate earlier.
- Also, since A′ = A ∪ {an+1} must also be a finite k-basis, we get:

an+1 must be ≤ the first element n for which r(A, n) = 0.

The explanation is simple. Suppose r(A, n) = 0 and we choose an+1 > n. Since
an+1 is the only new element, we can make r(A′, n) > 0 only if there exist some
ai such that ai + an+1 = n. But this is impossible since an+1 > n.

Thus, the largest possible candidate for n is 2an + 1,
=⇒ When extending A, an < an+1 ≤ 2an + 1.

Introduction
A set B ⊂ N is called a basis of N if every natural number can be written as a sum
of two elements of B. Define the additive representation function of B on N as

r(B, n) = #{(x, y) ∈ B2 : x + y = n}

Then a basis set B is one that satisfy r(B, n) > 0 for all n ∈ N.
The Erdős and Turán [1] conjecture states:

Conjecture 1 For any basis set B, r(B, n) is unbounded.
Equivalently, for any set B ⊂ N,

r(B, n) > 0, ∀n ∈ N −→ lim sup
n→∞

r(B, n) =∞ (1)

The conjecture asserts that if we attempt to fill the naturals with a set through pair-
wise addition, then the number of repeats in the additive representation will grow
without bounds.
It will be more convenient to use the following equivalent form of (1):

r(B, n) is bounded −→ r(B, n) = 0 for infinitely many values of n. (2)

Note that we do not write there exists some values of n for which r(B, n) = 0,
because if only finitely many n satisfy this, we can fill these holes without altering
the boundedness of r(B, n), thus producing a counter-example.

Finite constructions
To analyze the conjecture, we first model it in its finite form, and construct finite
bases to test the validity of the conjecture.

We make the following definitions:

•We call a set A = {a1, a2, . . . , am}, where 0 ≤ a1 < a2 < . . .,
a finite basis if r(A, n) > 0 for all n ≤ an.

•A basis A is a k-basis if r(A, n) ≤ k for all n ∈ N.

•The set E(k) contains all possible k-bases.

From these we gather 3 important observations:

(A) It is clear that E(1) ⊂ E(2) ⊂ . . .

(B) Any finite truncation of a finite/infinite basis
must be a finite k-basis, for some k.

(C) Hence, any infinite bases B belongs to

Σ = lim
k→∞

E(k)

The significance here is that, every k-basis has r(A, n) bounded, and thus,
if the conjecture is true, (2) implies that

there are no infinite k-bases for any k. (∗)
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The Erdős - Turán Conjecture


