SF U Roman Pearce = Michael Monagan

Multicore Processors Multiplication Using a Heap

The key to high performance is the CPU cache. Main memory is slow.

Johnson’s algorithm uses a heap to simultaneously merge each f; X g.

2262 The first term of each f; X ¢ is put into a heap, from which we extract
e terms in descending order. When f; x g, is extracted from the heap it
2 is added to the end of the result and we insert f; X g if it exists.

ﬁi* < fr x (gt &+ g+ .. + &fg)
- e add -~ f2 X (g]+ &t &t ... F g#g)
Slees Jrgt ... = Heap |<— f; x (g+ g+ g+ .. + 8t

mmzEzamanRn - 5
< furX (&t &+ &+ - + &)

The AMD Phenom II 1s an entry level CPU 1n 2009.
It has four cores (left), each with 512KB L2 cache,

and a 6 MB L3 cache (right) which can be used for The heap is O(# f) so it fits in the CPU cache.

communication between the cores. Inserting and extracting terms is O(log # f) monomial comparisons.

Most programs do not benefit from additional cores. We do at most O(# f#g log # f) comparisons in total.

Sparse Polynomials Parallel Algorithm

Computer algebra systems like Maple spend a lot of e Each thread uses a local heap to multiply some of the f; X g.

time multiplying and dividing polynomials. E.g.: e Intermediate results are written to buffers in shared L3 cache.
f =0xy’z — dy’2* — 6xy’z — 8x° — 5 e The threads take turns combining the buffers to form the result.

= 5xy’ + 2wy2® — 3yt + Twy + 1

(O B / Local Heaps

The polynomials are often stored in a sparse format g

which represents only non-zero terms. A el

To compute f X g we multiply each term of f by all Global \

the terms of g, sort the products, and add like terms. Heap A

Doubling the size of f and g quadruples the time or At -7 f

worse. A lot of time 1s spent doing large problems. - f

Even seemingly unrelated tasks like integration use \\

sparse polynomial routines. Their speed 1s critical. \\

So how fast can we multiply sparse polynomials ? A

—~
Maplesoft

Mathematics ¢ Modeling « Simulation @

MITACS

Parallel Sparse Polynomial Multiplication Using Heaps

Parallel Performance

We multiplied random univariate polynomials with 8192 terms.
Typical problems run 3x faster with 4 cores on a Core 17 CPU.

p 8192 x 8192 terms DENSE

= 33000 terms
= 502000 terms
5 = 1.63 M terms
= 3.09 M terms
= 6.01 M terms
=11.4 M terms
= 18.4 M terms
= 32.7 M terms

=493 M terms
= 65.7 M terms

v

SPARSE

~

o

parallel speedup

1 2 3 4
threads

The speedup 1s relative to the fastest sequential code available.
Our code 1s 50x faster than other computer algebra systems.

f=(4+z+y+z+t)" g=f+1
46376 x 46376 = 635376 terms W(f,g) = 3332

threads Core 17 Core 2 Quad
4 11.48s 6.15x 14.15s 4.25x
our software 3 16.63s 4.24x 1943 s 3.10x
(sdmp) 2 2826 s 2.50x 2829s 2.13x
1 70.59 s 60.25 s
Magma 2.15-8 1 526.12s
Pari/GP 2.3.3 1 642.74 s 707.61 s
Singular 3-1-0 1 744.00 s 1048.00 s
Maple 13 1 35849.48 s 9343.68 s

[1] Stephen C. Johnson. Sparse Polynomial Arithmetic. ACM
SIGSAM Bulletin, Volume 8, Issue 3 (1974) 63-71.

[2] Michael Monagan, Roman Pearce. Parallel Sparse Polyno-
mial Multiplication Using Heaps. Proceedings of ISSAC 2009.

