
Subgroup Lattice
If G is a group, then itssubgroup lattice, L(G) = (V,E), is defined as follows:

⋄ The vertex setV is composed of all distinct subgroupsH in G.

⋄ If |H| is a product of exactlyi primes, thenH is in leveli of L(G), denotedH ∈ L(i)(G).

⋄ SupposeH ∈ L(i)(G) andK ∈ L(j)(G) wherej > i. Then{H,K} ∈ E if and only if H ⊂ K
andj − i is minimal.

⋄ If {H,K} ∈ E and |H| < |K|, then its edge weight is defined as the index between the two
subgroups|K : H| = |K|/|H|.

Given a solvable groupG, the procedureDrawSubgroupLattice can display the completeL(G)
using the Cyclic Extension Method.DrawSubgroupLattice returns the plot or graph ofL(G), and
the list of elements ofG. Each vertex is labelled with the generators of its group; the generators
are labelled by the corresponding index in the returned listof elements, below defined asS.

> G := grelgroup({s,t}, {[s,s,s,s,s,s],[s,s,s,1/t,1/t],[s,t,s,1/t]}):
> P, S := DrawSubgroupLattice(G, output = ‘plot‘):
> P;

Although the subgroup lattice contains a wealth of information about a group, it is not unique. The
smallest such example exists at order16. Below we haveG1

∼= C8 × C2 and
G2 =< x, y|x8 = y2 = y−1x−1yx5 = e >. Clearly,G1 ≇ G2, yetL(G1)

∼= L(G2).
> G1 := permgroup(10, {[[1,2,3,4,5,6,7,8]], [[9,10]]}):
> G2 := grelgroup({x,y}, {[seq(x,i=1..8)],[y,y],[1/y,1/x,y,x,x,x,x,x]}):
> IsIsomorphic(G1,G2);

false, “Commutativity failure”

If G is not solvable, thenG contains perfect subgroups. Unfortunately, the Cyclic Extension
Method cannot generate the perfect subgroups of a group, soL(G) is currently incomplete for
non-solvable groups.

Future Projects
⋄ Inclusion of all perfect subgroups inDrawSubgroupLattice

⋄ Draw the Cayley Graph given a set of generators for a group

⋄ Efficient group representation for Matrices over a Galois Field

⋄ Highlighting of special subgroups inL(G), such as normal ones.
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With multiple subgroupsH1, · · · , Hn, one can highlight the elements of eachHi in the Cayley
Table. Elements in the same subgroup are coloured identically, but if an element, such as the
identity, is in more than one subgroup, the element’s colouris blended. Note that a subgroup can
either be specified in agroup format or as a set of generators.
> G := ‘Alt[4]‘:
> H1 := { [[1,2],[3,4]], [[1,3],[2,4]]}:
> H2 := permgroup(4, {[[1,2,3]]}):
> H3 := {[[2,3,4]]}:
> DrawCayleyTable(G, subgps = [H1, H2, H3]);

Isomorphism Test
The isomorphism problem is an exponentially hard problem. Hence, finding the best invariants to
distinguish two groups is crucial. Our computational experiments strongly suggest that the
conjugacy classes and commutativity relations in a group are good tests for isomorphism. Using
these invariants (and a few others), theIsIsomorphic procedure can determine whether two groups
G1, G2 are isomorphic.

If G1 ≇ G2, the procedure returnsfalse, along with an explanatory message.
> A := Matrix([[0,I],[I,0]]):
> B := Matrix([[0,-1],[1,0]]):
> G1 := MatrixGroup(0, {A, B}): # Quaternions
> G2 := ‘Dihedral[8]‘:
> IsIsomorphic(G1, G2);

false, “Element Order failure”

If G1
∼= G2, the procedure returnstrue, along with an isomorphic map fromG1 to G2.

> G1 := permgroup(8, {[[1,2,3,4],[5,6,8,7]], [[1,5,3,8], [2,7,4,6]]}):
> G2 := ‘Quaternions‘:
> b, phi := IsIsomorphic(G1, G2);

true, Φ

The given map can take any element fromG1 and returns its corresponding element inG2. Note
that the map returned is not necessarily unique.
> phi([]);

[

1 0
0 1

]

> phi([[1,2,3,4],[5,6,8,7]]);
[

0 −I
−I 0

]

> phi([[1,3],[2,4],[5,8],[6,7]]);
[

−1 0
0 −1

]

Overview
The structure and information of a group,G, can be represented in many ways. One can
compute its entire multiplication table, also known as its Cayley Table, or determine all the
subgroups ofG and arrange them in a lattice, or identify isomorphic forms of the same group. We
have implemented these new prospective additions for thegroup and the upcomingFiniteGroups
package of Maple.

New representations for groups have also been added. Well known families of groups such as
the Alternating Group or specific groups such as the Tetrahedral group can be called by name in
symbol format. In addition, there is a matrix representation for groups in the form of
MatrixGroup( p, S ). The group is formed with a set of generatorsS under multiplication modulo
p. If p = 0, then we are multiplying normally.

Cayley Table
Given a set of generatorsS for a groupG, DrawCayleyTable draws the group’s Cayley Table using
Dimino’s Algorithm to generate all the elements ofG. Each element is associated with a distinct
colour and label. There are various labelling, ordering, and colouring options for every element.
> G := permgroup(3, {[[1,2,3]], [[1,2]]}):
> DrawCayleyTable(G, labels = ’cycles’);

With a subgroupH, one can display its coset partition inG. Elements in the same coset are
coloured identically, and by default are grouped together.If H is normal inG, such asV4 in S4,
then this makes for a particularly interesting display.
> G := permgroup(4, {[[1,2,3,4]], [[1,2]]}):
> H := permgroup(4, {[[1,2],[3,4]], [[1,3],[2,4]]}):
> DrawCayleyTable(G, coset = H);

One can display the conjugacy classes of the group.
> G := ‘Quaternions‘:
> DrawCayleyTable(G, conjugacy = true);

Classic representation ofQ8

RecallS4/V4
∼= S3!
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