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Overview

The structure and information of a group, can be represented in many ways. One can
compute its entire multiplication table, also known as igg/ley Table, or determine all the
subgroups ofr and arrange them in a lattice, or identify isomorphic forrhhe same group. We
have implemented these new prospective additions fogiiigp and the upcomingriniteGroups
package of Maple.

New representations for groups have also been added. WaNrkifamilies of groups such as
the Alternating Group or specific groups such as the Tetrahgdoup can be called by nhame in
symbol format. In addition, there is a matrix representation farups in the form of

MatrixGroup( p, S ). The group is formed with a set of generatdrander multiplication modulo
p. If p =0, then we are multiplying normally.

Cayley Table

Given a set of generatofsfor a groupz, DrawCayleyTable draws the group’s Cayley Table using
Dimino’s Algorithm to generate all the elements®@f Each element is associated with a distinct
colour and label. There are various labelling, orderingl @louring options for every element.

> G := perngroup(3, {[[1,2,3]], [[1,2]]}):
> DrawCayl eyTabl e(G | abels = "cycles’);
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With a subgroupH, one can display Its coset partition (8. Elements in the same coset are
coloured identically, and by default are grouped togetlef! is normal inGG, such ag/; in Sy,
then this makes for a particularly interesting display.

> G := perngroup(4, {[[1,2,3,4]], [[1,2]]}):

> H:= pernmgroup(4, {[[1,2],[3,4]], [[1,3],[2,4]]}):

> DrawCayl eyTabl e(G coset = ;
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One can display the conjugacy c

> G := ‘Quaternions‘:

> DrawCayl eyTabl e(G conjugacy = true);
1 -1 - j - i -k k
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With multiple subgroupd?y, - - - , H,, one can highlight the elements of eallhin the Cayley
Table. Elements in the same subgroup are coloured idegtitait if an element, such as the
identity, Is iIn more than one subgroup, the element’s calmbiended. Note that a subgroup can
either be specified in group format or as a set of generators.

> G:= "At[4]":

> HL := { [[1,2],[3,4]], [[1,3].[24]]}

> H2 := pernmgroup(4, {[[1,2,3]]}):

> H3 :={[[2,3,4]] }

> DrawCayl eyTabl e(G subgps = [Hl, H2, H3]);
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| somor phism Test

The isomorphism problem is an exponentially hard probleemnds, finding the best invariants to
distinguish two groups is crucial. Our computational expents strongly suggest that the
conjugacy classes and commutativity relations in a groepgand tests for isomorphism. Using
these invariants (and a few others), tBlsomor phic procedure can determine whether two groups
(G1, G are isomorphic.

If G 2 G9, the procedure returrfalse, along with an explanatory message.
> A= Mtrix([[O,I],[!1,0]]):
B Matrix([[O,-1],[1,0]]):
Gl := MatrixGoup(0, {A B}):
& = ‘Dihedral [8] ‘:

| sl sonor phic(Gl, @&);
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false, “Element Order failure”

If G = G, the procedure returrisue, along with an isomorphic map fro; to Gb.

> Gl := perngroup(8, {[[1,2,3,4],[5,6,8,7]], [[1,5,3,8], [2,7,4,6]]}):
> & := ‘Quaternions‘:

> b, phi := Islsonorphic(Gl, &);

true,

The given map can take any element fréimand returns its corresponding elementin Note
that the map returned is not necessarily unique.

> phi ([1);
10
b
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> phi ([[1,3],[2,4],[5,8],[6,7]]);

OE

> phi([[1,2,3,4],[5,6,8,7]]);
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Subgroup L attice

If G'is a group, then itsubgroup lattice, L(G) = (V, E), is defined as follows:

¢ The vertex set’ is composed of all distinct subgroupsin G
o If |H| is a product of exactly primes, therd is in leveli of L(G), denotedH € LI)(@).

o Suppose € L)(G) andK € LU)(G) wherej > i. Then{H,K} € Eifandonlyif H c K
andj — ¢ Is minimal.

olf {H,K} € F and|H| < |K]|, then its edge weight is defined as the index between the two
subgroupsk : H| = |K|/|H|.

Given a solvable grougr, the proceduréraw3ubgroupLattice can display the completé(G)
using the Cyclic Extension Metho@rawSubgroupLattice returns the plot or graph di(G), and
the list of elements ofs. Each vertex is labelled with the generators of its group;glnerators
are labelled by the corresponding index in the returneafisiements, below defined &s

> G := grelgroup({s,t}, {[s,s,s,s,s,s],[s,s,s,1/t,1/t],[s,t,s,1/t]}):
> P, S := DrawSubgroupLattice(G output = ‘plot’):
> P
<2,3,5>
3 3
2 3
<2,3> <2,5> <2,6> <2,7>
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2
3
<1l>

Although the subgroup lattice contains a wealth of infonoragibout a group, it is not unique. The
smallest such example exists at orderBelow we havey; = Cy x (s and

Gy =< z,y|z® = y* = y Lo~ lyz® = e >. Clearly,G| 2 Gy, yetL(G;) = L(G).

> Gl := pernmgroup(10, {[[1,2,3,4,5,6,7,8]], [[9,10]] }):

> & = grelgroup({x,y}, {[sea(x,i=1..8)],[y,Y]l,.[1y,1/X,y,X, X, X, X,X]}):
> | sl sonorphic(Gl, R),;

false, “Commutativity failure”
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If G Is not solvable, therdy contains perfect subgroups. Unfortunately, the CycliceBgion
Method cannot generate the perfect subgroups of a group/{Go is currently incomplete for
non-solvable groups.

Future Projects

¢ Inclusion of all perfect subgroups [DrawSubgroupLattice

¢ Draw the Cayley Graph given a set of generators for a group
¢ Efficient group representation for Matrices over a Galoedd-i

o Highlighting of special subgroups ib(G), such as normal ones.
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